[edit]
A Tree-Structured Multi-Task Model Recommender
Proceedings of the First International Conference on Automated Machine Learning, PMLR 188:10/1-12, 2022.
Abstract
Tree-structured multi-task architectures have been employed to jointly tackle multiple vision tasks in the context of multi-task learning (MTL). The major challenge is to determine where to branch out for each task given a backbone model to optimize for both task accuracy and computation efficiency. To address the challenge, this paper proposes a recommender that, given a set of tasks and a convolutional neural network-based backbone model, automatically suggests tree-structured multi-task architectures that could achieve a high task performance while meeting a user-specified computation budget without performing model training. Extensive evaluations on popular MTL benchmarks show that the recommended architectures could achieve competitive task accuracy and computation efficiency compared with state-of-the-art MTL methods. Our tree-structured multi-task model recommender is open-sourced and available at \url{https://github.com/zhanglijun95/TreeMTL}.