On the Consistency of Multi-Label Learning

Wei Gao, Zhi-Hua Zhou
Proceedings of the 24th Annual Conference on Learning Theory, PMLR 19:341-358, 2011.

Abstract

Multi-label learning has attracted much attention during the past few years. Many multi-label learning approaches have been developed, mostly working with surrogate loss functions since multi-label loss functions are usually difficult to optimize directly owing to non-convexity and discontinuity. Though these approaches are effective, to the best of our knowledge, there is no theoretical result on the convergence of risk of the learned functions to the Bayes risk. In this paper, focusing on two well-known multi-label loss functions, i.e., ranking loss and hamming loss, we prove a necessary and sufficient condition for the consistency of multi-label learning based on surrogate loss functions. Our results disclose that, surprisingly, none convex surrogate loss is consistent with the ranking loss. Inspired by the finding, we introduce the partial ranking loss, with which some surrogate functions are consistent. For hamming loss, we show that some recent multi-label learning approaches are inconsistent even for deterministic multi-label classification, and give a surrogate loss function which is consistent for the deterministic case. Finally, we discuss on the consistency of learning approaches which address multi-label learning by decomposing into a set of binary classification problems.

Cite this Paper


BibTeX
@InProceedings{pmlr-v19-gao11a, title = {On the Consistency of Multi-Label Learning}, author = {Gao, Wei and Zhou, Zhi-Hua}, booktitle = {Proceedings of the 24th Annual Conference on Learning Theory}, pages = {341--358}, year = {2011}, editor = {Kakade, Sham M. and von Luxburg, Ulrike}, volume = {19}, series = {Proceedings of Machine Learning Research}, address = {Budapest, Hungary}, month = {09--11 Jun}, publisher = {PMLR}, pdf = {http://proceedings.mlr.press/v19/gao11a/gao11a.pdf}, url = {https://proceedings.mlr.press/v19/gao11a.html}, abstract = {Multi-label learning has attracted much attention during the past few years. Many multi-label learning approaches have been developed, mostly working with surrogate loss functions since multi-label loss functions are usually difficult to optimize directly owing to non-convexity and discontinuity. Though these approaches are effective, to the best of our knowledge, there is no theoretical result on the convergence of risk of the learned functions to the Bayes risk. In this paper, focusing on two well-known multi-label loss functions, i.e., ranking loss and hamming loss, we prove a necessary and sufficient condition for the consistency of multi-label learning based on surrogate loss functions. Our results disclose that, surprisingly, none convex surrogate loss is consistent with the ranking loss. Inspired by the finding, we introduce the partial ranking loss, with which some surrogate functions are consistent. For hamming loss, we show that some recent multi-label learning approaches are inconsistent even for deterministic multi-label classification, and give a surrogate loss function which is consistent for the deterministic case. Finally, we discuss on the consistency of learning approaches which address multi-label learning by decomposing into a set of binary classification problems.} }
Endnote
%0 Conference Paper %T On the Consistency of Multi-Label Learning %A Wei Gao %A Zhi-Hua Zhou %B Proceedings of the 24th Annual Conference on Learning Theory %C Proceedings of Machine Learning Research %D 2011 %E Sham M. Kakade %E Ulrike von Luxburg %F pmlr-v19-gao11a %I PMLR %P 341--358 %U https://proceedings.mlr.press/v19/gao11a.html %V 19 %X Multi-label learning has attracted much attention during the past few years. Many multi-label learning approaches have been developed, mostly working with surrogate loss functions since multi-label loss functions are usually difficult to optimize directly owing to non-convexity and discontinuity. Though these approaches are effective, to the best of our knowledge, there is no theoretical result on the convergence of risk of the learned functions to the Bayes risk. In this paper, focusing on two well-known multi-label loss functions, i.e., ranking loss and hamming loss, we prove a necessary and sufficient condition for the consistency of multi-label learning based on surrogate loss functions. Our results disclose that, surprisingly, none convex surrogate loss is consistent with the ranking loss. Inspired by the finding, we introduce the partial ranking loss, with which some surrogate functions are consistent. For hamming loss, we show that some recent multi-label learning approaches are inconsistent even for deterministic multi-label classification, and give a surrogate loss function which is consistent for the deterministic case. Finally, we discuss on the consistency of learning approaches which address multi-label learning by decomposing into a set of binary classification problems.
RIS
TY - CPAPER TI - On the Consistency of Multi-Label Learning AU - Wei Gao AU - Zhi-Hua Zhou BT - Proceedings of the 24th Annual Conference on Learning Theory DA - 2011/12/21 ED - Sham M. Kakade ED - Ulrike von Luxburg ID - pmlr-v19-gao11a PB - PMLR DP - Proceedings of Machine Learning Research VL - 19 SP - 341 EP - 358 L1 - http://proceedings.mlr.press/v19/gao11a/gao11a.pdf UR - https://proceedings.mlr.press/v19/gao11a.html AB - Multi-label learning has attracted much attention during the past few years. Many multi-label learning approaches have been developed, mostly working with surrogate loss functions since multi-label loss functions are usually difficult to optimize directly owing to non-convexity and discontinuity. Though these approaches are effective, to the best of our knowledge, there is no theoretical result on the convergence of risk of the learned functions to the Bayes risk. In this paper, focusing on two well-known multi-label loss functions, i.e., ranking loss and hamming loss, we prove a necessary and sufficient condition for the consistency of multi-label learning based on surrogate loss functions. Our results disclose that, surprisingly, none convex surrogate loss is consistent with the ranking loss. Inspired by the finding, we introduce the partial ranking loss, with which some surrogate functions are consistent. For hamming loss, we show that some recent multi-label learning approaches are inconsistent even for deterministic multi-label classification, and give a surrogate loss function which is consistent for the deterministic case. Finally, we discuss on the consistency of learning approaches which address multi-label learning by decomposing into a set of binary classification problems. ER -
APA
Gao, W. & Zhou, Z.. (2011). On the Consistency of Multi-Label Learning. Proceedings of the 24th Annual Conference on Learning Theory, in Proceedings of Machine Learning Research 19:341-358 Available from https://proceedings.mlr.press/v19/gao11a.html.

Related Material