Natural Compression for Distributed Deep Learning

Samuel Horvóth, Chen-Yu Ho, Ludovit Horvath, Atal Narayan Sahu, Marco Canini, Peter Richtarik
Proceedings of Mathematical and Scientific Machine Learning, PMLR 190:129-141, 2022.

Abstract

Modern deep learning models are often trained in parallel over a collection of distributed machines to reduce training time. In such settings, communication of model updates among machines becomes a significant performance bottleneck and various lossy update compression techniques have been proposed to alleviate this problem. In this work, we introduce a new, simple yet theoretically and practically effective compression technique: {\em natural compression (Cnat)}. Our technique is applied individually to all entries of the to-be-compressed update vector and works by randomized rounding to the nearest (negative or positive) power of two, which can be computed in a “natural” way by ignoring the mantissa. We show that compared to no compression, Cnat increases the second moment of the compressed vector by not more than the tiny factor 98, which means that the effect of Cnat on the convergence speed of popular training algorithms, such as distributed SGD, is negligible. However, the communications savings enabled by Cnat are substantial, leading to {\em 3-4× improvement in overall theoretical running time}. For applications requiring more aggressive compression, we generalize Cnat to {\em natural dithering}, which we prove is {\em exponentially better} than the common random dithering technique. Our compression operators can be used on their own or in combination with existing operators for a more aggressive combined effect, and offer new state-of-the-art both in theory and practice.

Cite this Paper


BibTeX
@InProceedings{pmlr-v190-horvoth22a, title = {Natural Compression for Distributed Deep Learning}, author = {Horv\'{o}th, Samuel and Ho, Chen-Yu and Horvath, Ludovit and Sahu, Atal Narayan and Canini, Marco and Richtarik, Peter}, booktitle = {Proceedings of Mathematical and Scientific Machine Learning}, pages = {129--141}, year = {2022}, editor = {Dong, Bin and Li, Qianxiao and Wang, Lei and Xu, Zhi-Qin John}, volume = {190}, series = {Proceedings of Machine Learning Research}, month = {15--17 Aug}, publisher = {PMLR}, pdf = {https://proceedings.mlr.press/v190/horvoth22a/horvoth22a.pdf}, url = {https://proceedings.mlr.press/v190/horvoth22a.html}, abstract = {Modern deep learning models are often trained in parallel over a collection of distributed machines to reduce training time. In such settings, communication of model updates among machines becomes a significant performance bottleneck and various lossy update compression techniques have been proposed to alleviate this problem. In this work, we introduce a new, simple yet theoretically and practically effective compression technique: {\em natural compression ($C_{\text{nat}}$)}. Our technique is applied individually to all entries of the to-be-compressed update vector and works by randomized rounding to the nearest (negative or positive) power of two, which can be computed in a “natural” way by ignoring the mantissa. We show that compared to no compression, $C_{\text{nat}}$ increases the second moment of the compressed vector by not more than the tiny factor $\frac{9}{8}$, which means that the effect of $C_{\text{nat}}$ on the convergence speed of popular training algorithms, such as distributed SGD, is negligible. However, the communications savings enabled by $C_{\text{nat}}$ are substantial, leading to {\em $3$-$4\times$ improvement in overall theoretical running time}. For applications requiring more aggressive compression, we generalize $C_{\text{nat}}$ to {\em natural dithering}, which we prove is {\em exponentially better} than the common random dithering technique. Our compression operators can be used on their own or in combination with existing operators for a more aggressive combined effect, and offer new state-of-the-art both in theory and practice.} }
Endnote
%0 Conference Paper %T Natural Compression for Distributed Deep Learning %A Samuel Horvóth %A Chen-Yu Ho %A Ludovit Horvath %A Atal Narayan Sahu %A Marco Canini %A Peter Richtarik %B Proceedings of Mathematical and Scientific Machine Learning %C Proceedings of Machine Learning Research %D 2022 %E Bin Dong %E Qianxiao Li %E Lei Wang %E Zhi-Qin John Xu %F pmlr-v190-horvoth22a %I PMLR %P 129--141 %U https://proceedings.mlr.press/v190/horvoth22a.html %V 190 %X Modern deep learning models are often trained in parallel over a collection of distributed machines to reduce training time. In such settings, communication of model updates among machines becomes a significant performance bottleneck and various lossy update compression techniques have been proposed to alleviate this problem. In this work, we introduce a new, simple yet theoretically and practically effective compression technique: {\em natural compression ($C_{\text{nat}}$)}. Our technique is applied individually to all entries of the to-be-compressed update vector and works by randomized rounding to the nearest (negative or positive) power of two, which can be computed in a “natural” way by ignoring the mantissa. We show that compared to no compression, $C_{\text{nat}}$ increases the second moment of the compressed vector by not more than the tiny factor $\frac{9}{8}$, which means that the effect of $C_{\text{nat}}$ on the convergence speed of popular training algorithms, such as distributed SGD, is negligible. However, the communications savings enabled by $C_{\text{nat}}$ are substantial, leading to {\em $3$-$4\times$ improvement in overall theoretical running time}. For applications requiring more aggressive compression, we generalize $C_{\text{nat}}$ to {\em natural dithering}, which we prove is {\em exponentially better} than the common random dithering technique. Our compression operators can be used on their own or in combination with existing operators for a more aggressive combined effect, and offer new state-of-the-art both in theory and practice.
APA
Horvóth, S., Ho, C., Horvath, L., Sahu, A.N., Canini, M. & Richtarik, P.. (2022). Natural Compression for Distributed Deep Learning. Proceedings of Mathematical and Scientific Machine Learning, in Proceedings of Machine Learning Research 190:129-141 Available from https://proceedings.mlr.press/v190/horvoth22a.html.

Related Material