[edit]
Automated LOINC Standardization Using Pre-trained Large Language Models
Proceedings of the 2nd Machine Learning for Health symposium, PMLR 193:343-355, 2022.
Abstract
Harmonization of local source concepts to standard clinical terminologies is a prerequisite for multi-center data aggregation and sharing. Challenges in automating the mapping process stem from the idiosyncratic source encoding schemes adopted by different health systems and the lack of large publicly available training data. In this study, we aim to develop a scalable and generalizable machine learning tool to facilitate standardizing laboratory observations to the Logical Observation Identifiers Names and Codes (LOINC). Specifically, we leverage the contextual embedding from pre-trained T5 models and propose a two-stage fine-tuning strategy based on contrastive learning to enable learning in a few-shot setting without manual feature engineering. Our method utilizes unlabeled general LOINC ontology and data augmentation to achieve high accuracy on retrieving the most relevant LOINC targets when limited amount of labeled data are available. We further show that our model generalizes well to unseen targets. Taken together, our approach shows great potential to reduce manual effort in LOINC standardization and can be easily extended to mapping other terminologies.