[edit]
Open Problem: Polynomial linearly-convergent method for g-convex optimization?
Proceedings of Thirty Sixth Conference on Learning Theory, PMLR 195:5950-5956, 2023.
Abstract
Let $f \colon \mathcal{M} \to \mathbb{R}$ be a Lipschitz and geodesically convex function defined on a $d$-dimensional Riemannian manifold $\mathcal{M}$. Does there exist a first-order deterministic algorithm which (a) uses at most $O(\mathrm{poly}(d) \log(\epsilon^{-1}))$ subgradient queries to find a point with target accuracy $\epsilon$, and (b) requires only $O(\mathrm{poly}(d))$ arithmetic operations per query? In convex optimization, the classical ellipsoid method achieves this. After detailing related work, we provide an ellipsoid-like algorithm with query complexity $O(d^2 \log^2(\epsilon^{-1}))$ and per-query complexity $O(d^2)$ for the limited case where $\mathcal{M}$ has constant curvature (hemisphere or hyperbolic space). We then detail possible approaches and corresponding obstacles for designing an ellipsoid-like method for general Riemannian manifolds.