Weak Recovery Threshold for the Hypergraph Stochastic Block Model

Yuzhou Gu, Yury Polyanskiy
Proceedings of Thirty Sixth Conference on Learning Theory, PMLR 195:885-920, 2023.

Abstract

We study the weak recovery problem on the $r$-uniform hypergraph stochastic block model ($r$-HSBM) with two balanced communities. In HSBM a random graph is constructed by placing hyperedges with higher density if all vertices of a hyperedge share the same binary label, and weak recovery asks to recover a non-trivial fraction of the labels. We introduce a multi-terminal version of strong data processing inequalities (SDPIs), which we call the multi-terminal SDPI, and use it to prove a variety of impossibility results for weak recovery. In particular, we prove that weak recovery is impossible below the Kesten-Stigum (KS) threshold if $r=3,4$, or a strength parameter $\lambda$ is at least $\frac 15$. Prior work Pal and Zhu (2021) established that weak recovery in HSBM is always possible above the KS threshold. Consequently, there is no information-computation gap for these cases, which (partially) resolves a conjecture of Angelini et al. (2015). To our knowledge this is the first impossibility result for HSBM weak recovery.As usual, we reduce the study of non-recovery of HSBM to the study of non-reconstruction in a related broadcasting on hypertrees (BOHT) model. While we show that BOHT’s reconstruction threshold coincides with KS for $r=3,4$, surprisingly, we demonstrate that for $r\ge 7$ reconstruction is possible also below KS. This shows an interesting phase transition in the parameter $r$, and suggests that for $r\ge 7$, there might be an information-computation gap for the HSBM. For $r=5,6$ and large degree we propose an approach for showing non-reconstruction below KS, suggesting that $r=7$ is the correct threshold for onset of the new phase.

Cite this Paper


BibTeX
@InProceedings{pmlr-v195-gu23b, title = {Weak Recovery Threshold for the Hypergraph Stochastic Block Model}, author = {Gu, Yuzhou and Polyanskiy, Yury}, booktitle = {Proceedings of Thirty Sixth Conference on Learning Theory}, pages = {885--920}, year = {2023}, editor = {Neu, Gergely and Rosasco, Lorenzo}, volume = {195}, series = {Proceedings of Machine Learning Research}, month = {12--15 Jul}, publisher = {PMLR}, pdf = {https://proceedings.mlr.press/v195/gu23b/gu23b.pdf}, url = {https://proceedings.mlr.press/v195/gu23b.html}, abstract = {We study the weak recovery problem on the $r$-uniform hypergraph stochastic block model ($r$-HSBM) with two balanced communities. In HSBM a random graph is constructed by placing hyperedges with higher density if all vertices of a hyperedge share the same binary label, and weak recovery asks to recover a non-trivial fraction of the labels. We introduce a multi-terminal version of strong data processing inequalities (SDPIs), which we call the multi-terminal SDPI, and use it to prove a variety of impossibility results for weak recovery. In particular, we prove that weak recovery is impossible below the Kesten-Stigum (KS) threshold if $r=3,4$, or a strength parameter $\lambda$ is at least $\frac 15$. Prior work Pal and Zhu (2021) established that weak recovery in HSBM is always possible above the KS threshold. Consequently, there is no information-computation gap for these cases, which (partially) resolves a conjecture of Angelini et al. (2015). To our knowledge this is the first impossibility result for HSBM weak recovery.As usual, we reduce the study of non-recovery of HSBM to the study of non-reconstruction in a related broadcasting on hypertrees (BOHT) model. While we show that BOHT’s reconstruction threshold coincides with KS for $r=3,4$, surprisingly, we demonstrate that for $r\ge 7$ reconstruction is possible also below KS. This shows an interesting phase transition in the parameter $r$, and suggests that for $r\ge 7$, there might be an information-computation gap for the HSBM. For $r=5,6$ and large degree we propose an approach for showing non-reconstruction below KS, suggesting that $r=7$ is the correct threshold for onset of the new phase.} }
Endnote
%0 Conference Paper %T Weak Recovery Threshold for the Hypergraph Stochastic Block Model %A Yuzhou Gu %A Yury Polyanskiy %B Proceedings of Thirty Sixth Conference on Learning Theory %C Proceedings of Machine Learning Research %D 2023 %E Gergely Neu %E Lorenzo Rosasco %F pmlr-v195-gu23b %I PMLR %P 885--920 %U https://proceedings.mlr.press/v195/gu23b.html %V 195 %X We study the weak recovery problem on the $r$-uniform hypergraph stochastic block model ($r$-HSBM) with two balanced communities. In HSBM a random graph is constructed by placing hyperedges with higher density if all vertices of a hyperedge share the same binary label, and weak recovery asks to recover a non-trivial fraction of the labels. We introduce a multi-terminal version of strong data processing inequalities (SDPIs), which we call the multi-terminal SDPI, and use it to prove a variety of impossibility results for weak recovery. In particular, we prove that weak recovery is impossible below the Kesten-Stigum (KS) threshold if $r=3,4$, or a strength parameter $\lambda$ is at least $\frac 15$. Prior work Pal and Zhu (2021) established that weak recovery in HSBM is always possible above the KS threshold. Consequently, there is no information-computation gap for these cases, which (partially) resolves a conjecture of Angelini et al. (2015). To our knowledge this is the first impossibility result for HSBM weak recovery.As usual, we reduce the study of non-recovery of HSBM to the study of non-reconstruction in a related broadcasting on hypertrees (BOHT) model. While we show that BOHT’s reconstruction threshold coincides with KS for $r=3,4$, surprisingly, we demonstrate that for $r\ge 7$ reconstruction is possible also below KS. This shows an interesting phase transition in the parameter $r$, and suggests that for $r\ge 7$, there might be an information-computation gap for the HSBM. For $r=5,6$ and large degree we propose an approach for showing non-reconstruction below KS, suggesting that $r=7$ is the correct threshold for onset of the new phase.
APA
Gu, Y. & Polyanskiy, Y.. (2023). Weak Recovery Threshold for the Hypergraph Stochastic Block Model. Proceedings of Thirty Sixth Conference on Learning Theory, in Proceedings of Machine Learning Research 195:885-920 Available from https://proceedings.mlr.press/v195/gu23b.html.

Related Material