Neighborhood-Aware Scalable Temporal Network Representation Learning

Yuhong Luo, Pan Li
Proceedings of the First Learning on Graphs Conference, PMLR 198:1:1-1:18, 2022.

Abstract

Temporal networks have been widely used to model real-world complex systems such as financial systems and e-commerce systems. In a temporal network, the joint neighborhood of a set of nodes often provides crucial structural information useful for predicting whether they may interact at a certain time. However, recent representation learning methods for temporal networks often fail to extract such information or depend on online construction of structural features, which is time-consuming. To address the issue, this work proposes Neighborhood-Aware Temporal network model (NAT). For each node in the network, NAT abandons the commonly-used one-single-vector-based representation while adopting a novel dictionary-type neighborhood representation. Such a dictionary representation records a downsampled set of the neighboring nodes as keys, and allows fast construction of structural features for a joint neighborhood of multiple nodes. We also design a dedicated data structure termed N-cache to support parallel access and update of those dictionary representations on GPUs. NAT gets evaluated over seven real-world large-scale temporal networks. NAT not only outperforms all cutting-edge baselines by averaged 1.2% and 4.2% in transductive and inductive link prediction accuracy, respectively, but also keeps scalable by achieving a speed-up of 4.1-76.7x against the baselines that adopt joint structural features and achieves a speed-up of 1.6-4.0x against the baselines that cannot adopt those features. The link to the code: https: //github.com/Graph-COM/Neighborhood-Aware-Temporal-Network.

Cite this Paper


BibTeX
@InProceedings{pmlr-v198-luo22a, title = {Neighborhood-Aware Scalable Temporal Network Representation Learning}, author = {Luo, Yuhong and Li, Pan}, booktitle = {Proceedings of the First Learning on Graphs Conference}, pages = {1:1--1:18}, year = {2022}, editor = {Rieck, Bastian and Pascanu, Razvan}, volume = {198}, series = {Proceedings of Machine Learning Research}, month = {09--12 Dec}, publisher = {PMLR}, pdf = {https://proceedings.mlr.press/v198/luo22a/luo22a.pdf}, url = {https://proceedings.mlr.press/v198/luo22a.html}, abstract = {Temporal networks have been widely used to model real-world complex systems such as financial systems and e-commerce systems. In a temporal network, the joint neighborhood of a set of nodes often provides crucial structural information useful for predicting whether they may interact at a certain time. However, recent representation learning methods for temporal networks often fail to extract such information or depend on online construction of structural features, which is time-consuming. To address the issue, this work proposes Neighborhood-Aware Temporal network model (NAT). For each node in the network, NAT abandons the commonly-used one-single-vector-based representation while adopting a novel dictionary-type neighborhood representation. Such a dictionary representation records a downsampled set of the neighboring nodes as keys, and allows fast construction of structural features for a joint neighborhood of multiple nodes. We also design a dedicated data structure termed N-cache to support parallel access and update of those dictionary representations on GPUs. NAT gets evaluated over seven real-world large-scale temporal networks. NAT not only outperforms all cutting-edge baselines by averaged 1.2% and 4.2% in transductive and inductive link prediction accuracy, respectively, but also keeps scalable by achieving a speed-up of 4.1-76.7x against the baselines that adopt joint structural features and achieves a speed-up of 1.6-4.0x against the baselines that cannot adopt those features. The link to the code: https: //github.com/Graph-COM/Neighborhood-Aware-Temporal-Network.} }
Endnote
%0 Conference Paper %T Neighborhood-Aware Scalable Temporal Network Representation Learning %A Yuhong Luo %A Pan Li %B Proceedings of the First Learning on Graphs Conference %C Proceedings of Machine Learning Research %D 2022 %E Bastian Rieck %E Razvan Pascanu %F pmlr-v198-luo22a %I PMLR %P 1:1--1:18 %U https://proceedings.mlr.press/v198/luo22a.html %V 198 %X Temporal networks have been widely used to model real-world complex systems such as financial systems and e-commerce systems. In a temporal network, the joint neighborhood of a set of nodes often provides crucial structural information useful for predicting whether they may interact at a certain time. However, recent representation learning methods for temporal networks often fail to extract such information or depend on online construction of structural features, which is time-consuming. To address the issue, this work proposes Neighborhood-Aware Temporal network model (NAT). For each node in the network, NAT abandons the commonly-used one-single-vector-based representation while adopting a novel dictionary-type neighborhood representation. Such a dictionary representation records a downsampled set of the neighboring nodes as keys, and allows fast construction of structural features for a joint neighborhood of multiple nodes. We also design a dedicated data structure termed N-cache to support parallel access and update of those dictionary representations on GPUs. NAT gets evaluated over seven real-world large-scale temporal networks. NAT not only outperforms all cutting-edge baselines by averaged 1.2% and 4.2% in transductive and inductive link prediction accuracy, respectively, but also keeps scalable by achieving a speed-up of 4.1-76.7x against the baselines that adopt joint structural features and achieves a speed-up of 1.6-4.0x against the baselines that cannot adopt those features. The link to the code: https: //github.com/Graph-COM/Neighborhood-Aware-Temporal-Network.
APA
Luo, Y. & Li, P.. (2022). Neighborhood-Aware Scalable Temporal Network Representation Learning. Proceedings of the First Learning on Graphs Conference, in Proceedings of Machine Learning Research 198:1:1-1:18 Available from https://proceedings.mlr.press/v198/luo22a.html.

Related Material