Learnable Commutative Monoids for Graph Neural Networks

Euan Ong, Petar Veličković
Proceedings of the First Learning on Graphs Conference, PMLR 198:43:1-43:22, 2022.

Abstract

Graph neural networks (GNNs) have been shown to be highly sensitive to the choice of aggregation function. While summing over a node’s neighbours can approximate any permutation-invariant function over discrete inputs, Cohen-Karlik et al. [2020] proved there are set-aggregation problems for which summing cannot generalise to unbounded inputs, proposing recurrent neural networks regularised towards permutation-invariance as a more expressive aggregator. We show that these results carry over to the graph domain: GNNs equipped with recurrent aggregators are competitive with state-of-the-art permutation-invariant aggregators, on both synthetic benchmarks and real-world problems. However, despite the benefits of recurrent aggregators, their O(V) depth makes them both difficult to parallelise and harder to train on large graphs. Inspired by the observation that a well-behaved aggregator for a GNN is a commutative monoid over its latent space, we propose a framework for constructing learnable, commutative, associative binary operators. And with this, we construct an aggregator of O(log V) depth, yielding exponential improvements for both parallelism and dependency length while achieving performance competitive with recurrent aggregators. Based on our empirical observations, our proposed learnable commutative monoid (LCM) aggregator represents a favourable tradeoff between efficient and expressive aggregators.

Cite this Paper


BibTeX
@InProceedings{pmlr-v198-ong22a, title = {Learnable Commutative Monoids for Graph Neural Networks}, author = {Ong, Euan and Veli{\v c}kovi{\' c}, Petar}, booktitle = {Proceedings of the First Learning on Graphs Conference}, pages = {43:1--43:22}, year = {2022}, editor = {Rieck, Bastian and Pascanu, Razvan}, volume = {198}, series = {Proceedings of Machine Learning Research}, month = {09--12 Dec}, publisher = {PMLR}, pdf = {https://proceedings.mlr.press/v198/ong22a/ong22a.pdf}, url = {https://proceedings.mlr.press/v198/ong22a.html}, abstract = {Graph neural networks (GNNs) have been shown to be highly sensitive to the choice of aggregation function. While summing over a node’s neighbours can approximate any permutation-invariant function over discrete inputs, Cohen-Karlik et al. [2020] proved there are set-aggregation problems for which summing cannot generalise to unbounded inputs, proposing recurrent neural networks regularised towards permutation-invariance as a more expressive aggregator. We show that these results carry over to the graph domain: GNNs equipped with recurrent aggregators are competitive with state-of-the-art permutation-invariant aggregators, on both synthetic benchmarks and real-world problems. However, despite the benefits of recurrent aggregators, their O(V) depth makes them both difficult to parallelise and harder to train on large graphs. Inspired by the observation that a well-behaved aggregator for a GNN is a commutative monoid over its latent space, we propose a framework for constructing learnable, commutative, associative binary operators. And with this, we construct an aggregator of O(log V) depth, yielding exponential improvements for both parallelism and dependency length while achieving performance competitive with recurrent aggregators. Based on our empirical observations, our proposed learnable commutative monoid (LCM) aggregator represents a favourable tradeoff between efficient and expressive aggregators.} }
Endnote
%0 Conference Paper %T Learnable Commutative Monoids for Graph Neural Networks %A Euan Ong %A Petar Veličković %B Proceedings of the First Learning on Graphs Conference %C Proceedings of Machine Learning Research %D 2022 %E Bastian Rieck %E Razvan Pascanu %F pmlr-v198-ong22a %I PMLR %P 43:1--43:22 %U https://proceedings.mlr.press/v198/ong22a.html %V 198 %X Graph neural networks (GNNs) have been shown to be highly sensitive to the choice of aggregation function. While summing over a node’s neighbours can approximate any permutation-invariant function over discrete inputs, Cohen-Karlik et al. [2020] proved there are set-aggregation problems for which summing cannot generalise to unbounded inputs, proposing recurrent neural networks regularised towards permutation-invariance as a more expressive aggregator. We show that these results carry over to the graph domain: GNNs equipped with recurrent aggregators are competitive with state-of-the-art permutation-invariant aggregators, on both synthetic benchmarks and real-world problems. However, despite the benefits of recurrent aggregators, their O(V) depth makes them both difficult to parallelise and harder to train on large graphs. Inspired by the observation that a well-behaved aggregator for a GNN is a commutative monoid over its latent space, we propose a framework for constructing learnable, commutative, associative binary operators. And with this, we construct an aggregator of O(log V) depth, yielding exponential improvements for both parallelism and dependency length while achieving performance competitive with recurrent aggregators. Based on our empirical observations, our proposed learnable commutative monoid (LCM) aggregator represents a favourable tradeoff between efficient and expressive aggregators.
APA
Ong, E. & Veličković, P.. (2022). Learnable Commutative Monoids for Graph Neural Networks. Proceedings of the First Learning on Graphs Conference, in Proceedings of Machine Learning Research 198:43:1-43:22 Available from https://proceedings.mlr.press/v198/ong22a.html.

Related Material