In or Out? Fixing ImageNet Out-of-Distribution Detection Evaluation

Julian Bitterwolf, Maximilian Müller, Matthias Hein
Proceedings of the 40th International Conference on Machine Learning, PMLR 202:2471-2506, 2023.

Abstract

Out-of-distribution (OOD) detection is the problem of identifying inputs which are unrelated to the in-distribution task. The OOD detection performance when the in-distribution (ID) is ImageNet-1K is commonly being tested on a small range of test OOD datasets. We find that most of the currently used test OOD datasets, including datasets from the open set recognition (OSR) literature, have severe issues: In some cases more than 50$%$ of the dataset contains objects belonging to one of the ID classes. These erroneous samples heavily distort the evaluation of OOD detectors. As a solution, we introduce with NINCO a novel test OOD dataset, each sample checked to be ID free, which with its fine-grained range of OOD classes allows for a detailed analysis of an OOD detector’s strengths and failure modes, particularly when paired with a number of synthetic “OOD unit-tests”. We provide detailed evaluations across a large set of architectures and OOD detection methods on NINCO and the unit-tests, revealing new insights about model weaknesses and the effects of pretraining on OOD detection performance. We provide code and data at https://github.com/j-cb/NINCO.

Cite this Paper


BibTeX
@InProceedings{pmlr-v202-bitterwolf23a, title = {In or Out? {F}ixing {I}mage{N}et Out-of-Distribution Detection Evaluation}, author = {Bitterwolf, Julian and M\"{u}ller, Maximilian and Hein, Matthias}, booktitle = {Proceedings of the 40th International Conference on Machine Learning}, pages = {2471--2506}, year = {2023}, editor = {Krause, Andreas and Brunskill, Emma and Cho, Kyunghyun and Engelhardt, Barbara and Sabato, Sivan and Scarlett, Jonathan}, volume = {202}, series = {Proceedings of Machine Learning Research}, month = {23--29 Jul}, publisher = {PMLR}, pdf = {https://proceedings.mlr.press/v202/bitterwolf23a/bitterwolf23a.pdf}, url = {https://proceedings.mlr.press/v202/bitterwolf23a.html}, abstract = {Out-of-distribution (OOD) detection is the problem of identifying inputs which are unrelated to the in-distribution task. The OOD detection performance when the in-distribution (ID) is ImageNet-1K is commonly being tested on a small range of test OOD datasets. We find that most of the currently used test OOD datasets, including datasets from the open set recognition (OSR) literature, have severe issues: In some cases more than 50$%$ of the dataset contains objects belonging to one of the ID classes. These erroneous samples heavily distort the evaluation of OOD detectors. As a solution, we introduce with NINCO a novel test OOD dataset, each sample checked to be ID free, which with its fine-grained range of OOD classes allows for a detailed analysis of an OOD detector’s strengths and failure modes, particularly when paired with a number of synthetic “OOD unit-tests”. We provide detailed evaluations across a large set of architectures and OOD detection methods on NINCO and the unit-tests, revealing new insights about model weaknesses and the effects of pretraining on OOD detection performance. We provide code and data at https://github.com/j-cb/NINCO.} }
Endnote
%0 Conference Paper %T In or Out? Fixing ImageNet Out-of-Distribution Detection Evaluation %A Julian Bitterwolf %A Maximilian Müller %A Matthias Hein %B Proceedings of the 40th International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2023 %E Andreas Krause %E Emma Brunskill %E Kyunghyun Cho %E Barbara Engelhardt %E Sivan Sabato %E Jonathan Scarlett %F pmlr-v202-bitterwolf23a %I PMLR %P 2471--2506 %U https://proceedings.mlr.press/v202/bitterwolf23a.html %V 202 %X Out-of-distribution (OOD) detection is the problem of identifying inputs which are unrelated to the in-distribution task. The OOD detection performance when the in-distribution (ID) is ImageNet-1K is commonly being tested on a small range of test OOD datasets. We find that most of the currently used test OOD datasets, including datasets from the open set recognition (OSR) literature, have severe issues: In some cases more than 50$%$ of the dataset contains objects belonging to one of the ID classes. These erroneous samples heavily distort the evaluation of OOD detectors. As a solution, we introduce with NINCO a novel test OOD dataset, each sample checked to be ID free, which with its fine-grained range of OOD classes allows for a detailed analysis of an OOD detector’s strengths and failure modes, particularly when paired with a number of synthetic “OOD unit-tests”. We provide detailed evaluations across a large set of architectures and OOD detection methods on NINCO and the unit-tests, revealing new insights about model weaknesses and the effects of pretraining on OOD detection performance. We provide code and data at https://github.com/j-cb/NINCO.
APA
Bitterwolf, J., Müller, M. & Hein, M.. (2023). In or Out? Fixing ImageNet Out-of-Distribution Detection Evaluation. Proceedings of the 40th International Conference on Machine Learning, in Proceedings of Machine Learning Research 202:2471-2506 Available from https://proceedings.mlr.press/v202/bitterwolf23a.html.

Related Material