Online Mechanism Design for Information Acquisition

Federico Cacciamani, Matteo Castiglioni, Nicola Gatti
Proceedings of the 40th International Conference on Machine Learning, PMLR 202:3299-3326, 2023.

Abstract

We study the problem of designing mechanisms for information acquisition scenarios. This setting models strategic interactions between a uniformed receiver and a set of informed senders. In our model the senders receive information about the underlying state of nature and communicate their observation (either truthfully or not) to the receiver, which, based on this information, selects an action. Our goal is to design mechanisms maximizing the receiver’s utility while incentivizing the senders to report truthfully their information. First, we provide an algorithm that efficiently computes an optimal incentive compatible (IC) mechanism. Then, we focus on the online problem in which the receiver sequentially interacts in an unknown game, with the objective of minimizing the cumulative regret w.r.t. the optimal IC mechanism, and the cumulative violation of the incentive compatibility constraints. We investigate two different online scenarios, i.e., the full and bandit feedback settings. For the full feedback problem, we propose an algorithm that guarantees $\tilde{O}(\sqrt{T})$ regret and violation, while for the bandit feedback setting we present an algorithm that attains $\tilde{O}(T^{\alpha})$ regret and $\tilde{O}(T^{1-\alpha/2})$ violation for any $\alpha \in [1/2, 1]$. Finally, we complement our results providing a tight lower bound.

Cite this Paper


BibTeX
@InProceedings{pmlr-v202-cacciamani23a, title = {Online Mechanism Design for Information Acquisition}, author = {Cacciamani, Federico and Castiglioni, Matteo and Gatti, Nicola}, booktitle = {Proceedings of the 40th International Conference on Machine Learning}, pages = {3299--3326}, year = {2023}, editor = {Krause, Andreas and Brunskill, Emma and Cho, Kyunghyun and Engelhardt, Barbara and Sabato, Sivan and Scarlett, Jonathan}, volume = {202}, series = {Proceedings of Machine Learning Research}, month = {23--29 Jul}, publisher = {PMLR}, pdf = {https://proceedings.mlr.press/v202/cacciamani23a/cacciamani23a.pdf}, url = {https://proceedings.mlr.press/v202/cacciamani23a.html}, abstract = {We study the problem of designing mechanisms for information acquisition scenarios. This setting models strategic interactions between a uniformed receiver and a set of informed senders. In our model the senders receive information about the underlying state of nature and communicate their observation (either truthfully or not) to the receiver, which, based on this information, selects an action. Our goal is to design mechanisms maximizing the receiver’s utility while incentivizing the senders to report truthfully their information. First, we provide an algorithm that efficiently computes an optimal incentive compatible (IC) mechanism. Then, we focus on the online problem in which the receiver sequentially interacts in an unknown game, with the objective of minimizing the cumulative regret w.r.t. the optimal IC mechanism, and the cumulative violation of the incentive compatibility constraints. We investigate two different online scenarios, i.e., the full and bandit feedback settings. For the full feedback problem, we propose an algorithm that guarantees $\tilde{O}(\sqrt{T})$ regret and violation, while for the bandit feedback setting we present an algorithm that attains $\tilde{O}(T^{\alpha})$ regret and $\tilde{O}(T^{1-\alpha/2})$ violation for any $\alpha \in [1/2, 1]$. Finally, we complement our results providing a tight lower bound.} }
Endnote
%0 Conference Paper %T Online Mechanism Design for Information Acquisition %A Federico Cacciamani %A Matteo Castiglioni %A Nicola Gatti %B Proceedings of the 40th International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2023 %E Andreas Krause %E Emma Brunskill %E Kyunghyun Cho %E Barbara Engelhardt %E Sivan Sabato %E Jonathan Scarlett %F pmlr-v202-cacciamani23a %I PMLR %P 3299--3326 %U https://proceedings.mlr.press/v202/cacciamani23a.html %V 202 %X We study the problem of designing mechanisms for information acquisition scenarios. This setting models strategic interactions between a uniformed receiver and a set of informed senders. In our model the senders receive information about the underlying state of nature and communicate their observation (either truthfully or not) to the receiver, which, based on this information, selects an action. Our goal is to design mechanisms maximizing the receiver’s utility while incentivizing the senders to report truthfully their information. First, we provide an algorithm that efficiently computes an optimal incentive compatible (IC) mechanism. Then, we focus on the online problem in which the receiver sequentially interacts in an unknown game, with the objective of minimizing the cumulative regret w.r.t. the optimal IC mechanism, and the cumulative violation of the incentive compatibility constraints. We investigate two different online scenarios, i.e., the full and bandit feedback settings. For the full feedback problem, we propose an algorithm that guarantees $\tilde{O}(\sqrt{T})$ regret and violation, while for the bandit feedback setting we present an algorithm that attains $\tilde{O}(T^{\alpha})$ regret and $\tilde{O}(T^{1-\alpha/2})$ violation for any $\alpha \in [1/2, 1]$. Finally, we complement our results providing a tight lower bound.
APA
Cacciamani, F., Castiglioni, M. & Gatti, N.. (2023). Online Mechanism Design for Information Acquisition. Proceedings of the 40th International Conference on Machine Learning, in Proceedings of Machine Learning Research 202:3299-3326 Available from https://proceedings.mlr.press/v202/cacciamani23a.html.

Related Material