MyoDex: A Generalizable Prior for Dexterous Manipulation

Vittorio Caggiano, Sudeep Dasari, Vikash Kumar
Proceedings of the 40th International Conference on Machine Learning, PMLR 202:3327-3346, 2023.

Abstract

Human dexterity is a hallmark of motor control behaviors. Our hands can rapidly synthesize new behaviors despite the complexity (multi-articular and multi-joints, with 23 joints controlled by more than 40 muscles) of mosculoskeletal control. In this work, we take inspiration from how human dexterity builds on a diversity of prior experiences, instead of being acquired through a single task. Motivated by this observation, we set out to develop agents that can build upon previous experience to quickly acquire new (previously unattainable) behaviors. Specifically, our approach leverages multi-task learning to implicitly capture a task-agnostic behavioral priors (MyoDex) for human-like dexterity, using a physiologically realistic human hand model – MyoHand. We demonstrate MyoDex’s effectiveness in few-shot generalization as well as positive transfer to a large repertoire of unseen dexterous manipulation tasks. MyoDex can solve approximately 3x more tasks and it can accelerate the achievement of solutions by about 4x in comparison to a distillation baseline. While prior work has synthesized single musculoskeletal control behaviors, MyoDex is the first generalizable manipulation prior that catalyzes the learning of dexterous physiological control across a large variety of contact-rich behaviors.

Cite this Paper


BibTeX
@InProceedings{pmlr-v202-caggiano23a, title = {{M}yo{D}ex: A Generalizable Prior for Dexterous Manipulation}, author = {Caggiano, Vittorio and Dasari, Sudeep and Kumar, Vikash}, booktitle = {Proceedings of the 40th International Conference on Machine Learning}, pages = {3327--3346}, year = {2023}, editor = {Krause, Andreas and Brunskill, Emma and Cho, Kyunghyun and Engelhardt, Barbara and Sabato, Sivan and Scarlett, Jonathan}, volume = {202}, series = {Proceedings of Machine Learning Research}, month = {23--29 Jul}, publisher = {PMLR}, pdf = {https://proceedings.mlr.press/v202/caggiano23a/caggiano23a.pdf}, url = {https://proceedings.mlr.press/v202/caggiano23a.html}, abstract = {Human dexterity is a hallmark of motor control behaviors. Our hands can rapidly synthesize new behaviors despite the complexity (multi-articular and multi-joints, with 23 joints controlled by more than 40 muscles) of mosculoskeletal control. In this work, we take inspiration from how human dexterity builds on a diversity of prior experiences, instead of being acquired through a single task. Motivated by this observation, we set out to develop agents that can build upon previous experience to quickly acquire new (previously unattainable) behaviors. Specifically, our approach leverages multi-task learning to implicitly capture a task-agnostic behavioral priors (MyoDex) for human-like dexterity, using a physiologically realistic human hand model – MyoHand. We demonstrate MyoDex’s effectiveness in few-shot generalization as well as positive transfer to a large repertoire of unseen dexterous manipulation tasks. MyoDex can solve approximately 3x more tasks and it can accelerate the achievement of solutions by about 4x in comparison to a distillation baseline. While prior work has synthesized single musculoskeletal control behaviors, MyoDex is the first generalizable manipulation prior that catalyzes the learning of dexterous physiological control across a large variety of contact-rich behaviors.} }
Endnote
%0 Conference Paper %T MyoDex: A Generalizable Prior for Dexterous Manipulation %A Vittorio Caggiano %A Sudeep Dasari %A Vikash Kumar %B Proceedings of the 40th International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2023 %E Andreas Krause %E Emma Brunskill %E Kyunghyun Cho %E Barbara Engelhardt %E Sivan Sabato %E Jonathan Scarlett %F pmlr-v202-caggiano23a %I PMLR %P 3327--3346 %U https://proceedings.mlr.press/v202/caggiano23a.html %V 202 %X Human dexterity is a hallmark of motor control behaviors. Our hands can rapidly synthesize new behaviors despite the complexity (multi-articular and multi-joints, with 23 joints controlled by more than 40 muscles) of mosculoskeletal control. In this work, we take inspiration from how human dexterity builds on a diversity of prior experiences, instead of being acquired through a single task. Motivated by this observation, we set out to develop agents that can build upon previous experience to quickly acquire new (previously unattainable) behaviors. Specifically, our approach leverages multi-task learning to implicitly capture a task-agnostic behavioral priors (MyoDex) for human-like dexterity, using a physiologically realistic human hand model – MyoHand. We demonstrate MyoDex’s effectiveness in few-shot generalization as well as positive transfer to a large repertoire of unseen dexterous manipulation tasks. MyoDex can solve approximately 3x more tasks and it can accelerate the achievement of solutions by about 4x in comparison to a distillation baseline. While prior work has synthesized single musculoskeletal control behaviors, MyoDex is the first generalizable manipulation prior that catalyzes the learning of dexterous physiological control across a large variety of contact-rich behaviors.
APA
Caggiano, V., Dasari, S. & Kumar, V.. (2023). MyoDex: A Generalizable Prior for Dexterous Manipulation. Proceedings of the 40th International Conference on Machine Learning, in Proceedings of Machine Learning Research 202:3327-3346 Available from https://proceedings.mlr.press/v202/caggiano23a.html.

Related Material