Optimistic Online Mirror Descent for Bridging Stochastic and Adversarial Online Convex Optimization

Sijia Chen, Wei-Wei Tu, Peng Zhao, Lijun Zhang
Proceedings of the 40th International Conference on Machine Learning, PMLR 202:5002-5035, 2023.

Abstract

Stochastically Extended Adversarial (SEA) model is introduced by Sachs et al. (2022) as an interpolation between stochastic and adversarial online convex optimization. Under the smoothness condition, they demonstrate that the expected regret of optimistic follow-the-regularized-leader (FTRL) depends on the cumulative stochastic variance $\sigma_{1:T}^2$ and the cumulative adversarial variation $\Sigma_{1:T}^2$ for convex functions. They also provide a slightly weaker bound based on the maximal stochastic variance $\sigma_{\max}^2$ and the maximal adversarial variation $\Sigma_{\max}^2$ for strongly convex functions. Inspired by their work, we investigate the theoretical guarantees of optimistic online mirror descent (OMD) for the SEA model. For convex and smooth functions, we obtain the same $\mathcal{O}(\sqrt{\sigma_{1:T}^2}+\sqrt{\Sigma_{1:T}^2})$ regret bound, without the convexity requirement of individual functions. For strongly convex and smooth functions, we establish an $\mathcal{O}(\min\{\log (\sigma_{1:T}^2+\Sigma_{1:T}^2), (\sigma_{\max}^2 + \Sigma_{\max}^2) \log T\})$ bound, better than their $\mathcal{O}((\sigma_{\max}^2 + \Sigma_{\max}^2) \log T)$ result. For exp-concave and smooth functions, we achieve a new $\mathcal{O}(d\log(\sigma_{1:T}^2+\Sigma_{1:T}^2))$ bound. Owing to the OMD framework, we further establish dynamic regret for convex and smooth functions, which is more favorable in non-stationary online scenarios.

Cite this Paper


BibTeX
@InProceedings{pmlr-v202-chen23aa, title = {Optimistic Online Mirror Descent for Bridging Stochastic and Adversarial Online Convex Optimization}, author = {Chen, Sijia and Tu, Wei-Wei and Zhao, Peng and Zhang, Lijun}, booktitle = {Proceedings of the 40th International Conference on Machine Learning}, pages = {5002--5035}, year = {2023}, editor = {Krause, Andreas and Brunskill, Emma and Cho, Kyunghyun and Engelhardt, Barbara and Sabato, Sivan and Scarlett, Jonathan}, volume = {202}, series = {Proceedings of Machine Learning Research}, month = {23--29 Jul}, publisher = {PMLR}, pdf = {https://proceedings.mlr.press/v202/chen23aa/chen23aa.pdf}, url = {https://proceedings.mlr.press/v202/chen23aa.html}, abstract = {Stochastically Extended Adversarial (SEA) model is introduced by Sachs et al. (2022) as an interpolation between stochastic and adversarial online convex optimization. Under the smoothness condition, they demonstrate that the expected regret of optimistic follow-the-regularized-leader (FTRL) depends on the cumulative stochastic variance $\sigma_{1:T}^2$ and the cumulative adversarial variation $\Sigma_{1:T}^2$ for convex functions. They also provide a slightly weaker bound based on the maximal stochastic variance $\sigma_{\max}^2$ and the maximal adversarial variation $\Sigma_{\max}^2$ for strongly convex functions. Inspired by their work, we investigate the theoretical guarantees of optimistic online mirror descent (OMD) for the SEA model. For convex and smooth functions, we obtain the same $\mathcal{O}(\sqrt{\sigma_{1:T}^2}+\sqrt{\Sigma_{1:T}^2})$ regret bound, without the convexity requirement of individual functions. For strongly convex and smooth functions, we establish an $\mathcal{O}(\min\{\log (\sigma_{1:T}^2+\Sigma_{1:T}^2), (\sigma_{\max}^2 + \Sigma_{\max}^2) \log T\})$ bound, better than their $\mathcal{O}((\sigma_{\max}^2 + \Sigma_{\max}^2) \log T)$ result. For exp-concave and smooth functions, we achieve a new $\mathcal{O}(d\log(\sigma_{1:T}^2+\Sigma_{1:T}^2))$ bound. Owing to the OMD framework, we further establish dynamic regret for convex and smooth functions, which is more favorable in non-stationary online scenarios.} }
Endnote
%0 Conference Paper %T Optimistic Online Mirror Descent for Bridging Stochastic and Adversarial Online Convex Optimization %A Sijia Chen %A Wei-Wei Tu %A Peng Zhao %A Lijun Zhang %B Proceedings of the 40th International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2023 %E Andreas Krause %E Emma Brunskill %E Kyunghyun Cho %E Barbara Engelhardt %E Sivan Sabato %E Jonathan Scarlett %F pmlr-v202-chen23aa %I PMLR %P 5002--5035 %U https://proceedings.mlr.press/v202/chen23aa.html %V 202 %X Stochastically Extended Adversarial (SEA) model is introduced by Sachs et al. (2022) as an interpolation between stochastic and adversarial online convex optimization. Under the smoothness condition, they demonstrate that the expected regret of optimistic follow-the-regularized-leader (FTRL) depends on the cumulative stochastic variance $\sigma_{1:T}^2$ and the cumulative adversarial variation $\Sigma_{1:T}^2$ for convex functions. They also provide a slightly weaker bound based on the maximal stochastic variance $\sigma_{\max}^2$ and the maximal adversarial variation $\Sigma_{\max}^2$ for strongly convex functions. Inspired by their work, we investigate the theoretical guarantees of optimistic online mirror descent (OMD) for the SEA model. For convex and smooth functions, we obtain the same $\mathcal{O}(\sqrt{\sigma_{1:T}^2}+\sqrt{\Sigma_{1:T}^2})$ regret bound, without the convexity requirement of individual functions. For strongly convex and smooth functions, we establish an $\mathcal{O}(\min\{\log (\sigma_{1:T}^2+\Sigma_{1:T}^2), (\sigma_{\max}^2 + \Sigma_{\max}^2) \log T\})$ bound, better than their $\mathcal{O}((\sigma_{\max}^2 + \Sigma_{\max}^2) \log T)$ result. For exp-concave and smooth functions, we achieve a new $\mathcal{O}(d\log(\sigma_{1:T}^2+\Sigma_{1:T}^2))$ bound. Owing to the OMD framework, we further establish dynamic regret for convex and smooth functions, which is more favorable in non-stationary online scenarios.
APA
Chen, S., Tu, W., Zhao, P. & Zhang, L.. (2023). Optimistic Online Mirror Descent for Bridging Stochastic and Adversarial Online Convex Optimization. Proceedings of the 40th International Conference on Machine Learning, in Proceedings of Machine Learning Research 202:5002-5035 Available from https://proceedings.mlr.press/v202/chen23aa.html.

Related Material