Model Transferability with Responsive Decision Subjects

Yatong Chen, Zeyu Tang, Kun Zhang, Yang Liu
Proceedings of the 40th International Conference on Machine Learning, PMLR 202:4921-4952, 2023.

Abstract

Given an algorithmic predictor that is accurate on some source population consisting of strategic human decision subjects, will it remain accurate if the population respond to it? In our setting, an agent or a user corresponds to a sample $(X,Y)$ drawn from a distribution $\cal{D}$ and will face a model $h$ and its classification result $h(X)$. Agents can modify $X$ to adapt to $h$, which will incur a distribution shift on $(X,Y)$. Our formulation is motivated by applications where the deployed machine learning models are subjected to human agents, and will ultimately face responsive and interactive data distributions. We formalize the discussions of the transferability of a model by studying how the performance of the model trained on the available source distribution (data) would translate to the performance on its induced domain. We provide both upper bounds for the performance gap due to the induced domain shift, as well as lower bounds for the trade-offs that a classifier has to suffer on either the source training distribution or the induced target distribution. We provide further instantiated analysis for two popular domain adaptation settings, including covariate shift and target shift.

Cite this Paper


BibTeX
@InProceedings{pmlr-v202-chen23y, title = {Model Transferability with Responsive Decision Subjects}, author = {Chen, Yatong and Tang, Zeyu and Zhang, Kun and Liu, Yang}, booktitle = {Proceedings of the 40th International Conference on Machine Learning}, pages = {4921--4952}, year = {2023}, editor = {Krause, Andreas and Brunskill, Emma and Cho, Kyunghyun and Engelhardt, Barbara and Sabato, Sivan and Scarlett, Jonathan}, volume = {202}, series = {Proceedings of Machine Learning Research}, month = {23--29 Jul}, publisher = {PMLR}, pdf = {https://proceedings.mlr.press/v202/chen23y/chen23y.pdf}, url = {https://proceedings.mlr.press/v202/chen23y.html}, abstract = {Given an algorithmic predictor that is accurate on some source population consisting of strategic human decision subjects, will it remain accurate if the population respond to it? In our setting, an agent or a user corresponds to a sample $(X,Y)$ drawn from a distribution $\cal{D}$ and will face a model $h$ and its classification result $h(X)$. Agents can modify $X$ to adapt to $h$, which will incur a distribution shift on $(X,Y)$. Our formulation is motivated by applications where the deployed machine learning models are subjected to human agents, and will ultimately face responsive and interactive data distributions. We formalize the discussions of the transferability of a model by studying how the performance of the model trained on the available source distribution (data) would translate to the performance on its induced domain. We provide both upper bounds for the performance gap due to the induced domain shift, as well as lower bounds for the trade-offs that a classifier has to suffer on either the source training distribution or the induced target distribution. We provide further instantiated analysis for two popular domain adaptation settings, including covariate shift and target shift.} }
Endnote
%0 Conference Paper %T Model Transferability with Responsive Decision Subjects %A Yatong Chen %A Zeyu Tang %A Kun Zhang %A Yang Liu %B Proceedings of the 40th International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2023 %E Andreas Krause %E Emma Brunskill %E Kyunghyun Cho %E Barbara Engelhardt %E Sivan Sabato %E Jonathan Scarlett %F pmlr-v202-chen23y %I PMLR %P 4921--4952 %U https://proceedings.mlr.press/v202/chen23y.html %V 202 %X Given an algorithmic predictor that is accurate on some source population consisting of strategic human decision subjects, will it remain accurate if the population respond to it? In our setting, an agent or a user corresponds to a sample $(X,Y)$ drawn from a distribution $\cal{D}$ and will face a model $h$ and its classification result $h(X)$. Agents can modify $X$ to adapt to $h$, which will incur a distribution shift on $(X,Y)$. Our formulation is motivated by applications where the deployed machine learning models are subjected to human agents, and will ultimately face responsive and interactive data distributions. We formalize the discussions of the transferability of a model by studying how the performance of the model trained on the available source distribution (data) would translate to the performance on its induced domain. We provide both upper bounds for the performance gap due to the induced domain shift, as well as lower bounds for the trade-offs that a classifier has to suffer on either the source training distribution or the induced target distribution. We provide further instantiated analysis for two popular domain adaptation settings, including covariate shift and target shift.
APA
Chen, Y., Tang, Z., Zhang, K. & Liu, Y.. (2023). Model Transferability with Responsive Decision Subjects. Proceedings of the 40th International Conference on Machine Learning, in Proceedings of Machine Learning Research 202:4921-4952 Available from https://proceedings.mlr.press/v202/chen23y.html.

Related Material