Is Overfitting Necessary for Implicit Video Representation?

Hee Min Choi, Hyoa Kang, Dokwan Oh
Proceedings of the 40th International Conference on Machine Learning, PMLR 202:5748-5770, 2023.

Abstract

Compact representation of multimedia signals using implicit neural representations (INRs) has advanced significantly over the past few years, and recent works address their applications to video. Existing studies on video INR have focused on network architecture design as all video information is contained within network parameters. Here, we propose a new paradigm in efficient INR for videos based on the idea of strong lottery ticket (SLT) hypothesis (Zhou et al., 2019), which demonstrates the possibility of finding an accurate subnetwork mask, called supermask, for a randomly initialized classification network without weight training. Specifically, we train multiple supermasks with a hierarchical structure for a randomly initialized image-wise video representation model without weight updates. Different from a previous approach employing hierarchical supermasks (Okoshi et al., 2022), a trainable scale parameter for each mask is used instead of multiplying by the same fixed scale for all levels. This simple modification widens the parameter search space to sufficiently explore various sparsity patterns, leading the proposed algorithm to find stronger subnetworks. Moreover, extensive experiments on popular UVG benchmark show that random subnetworks obtained from our framework achieve higher reconstruction and visual quality than fully trained models with similar encoding sizes. Our study is the first to demonstrate the existence of SLTs in video INR models and propose an efficient method for finding them.

Cite this Paper


BibTeX
@InProceedings{pmlr-v202-choi23b, title = {Is Overfitting Necessary for Implicit Video Representation?}, author = {Choi, Hee Min and Kang, Hyoa and Oh, Dokwan}, booktitle = {Proceedings of the 40th International Conference on Machine Learning}, pages = {5748--5770}, year = {2023}, editor = {Krause, Andreas and Brunskill, Emma and Cho, Kyunghyun and Engelhardt, Barbara and Sabato, Sivan and Scarlett, Jonathan}, volume = {202}, series = {Proceedings of Machine Learning Research}, month = {23--29 Jul}, publisher = {PMLR}, pdf = {https://proceedings.mlr.press/v202/choi23b/choi23b.pdf}, url = {https://proceedings.mlr.press/v202/choi23b.html}, abstract = {Compact representation of multimedia signals using implicit neural representations (INRs) has advanced significantly over the past few years, and recent works address their applications to video. Existing studies on video INR have focused on network architecture design as all video information is contained within network parameters. Here, we propose a new paradigm in efficient INR for videos based on the idea of strong lottery ticket (SLT) hypothesis (Zhou et al., 2019), which demonstrates the possibility of finding an accurate subnetwork mask, called supermask, for a randomly initialized classification network without weight training. Specifically, we train multiple supermasks with a hierarchical structure for a randomly initialized image-wise video representation model without weight updates. Different from a previous approach employing hierarchical supermasks (Okoshi et al., 2022), a trainable scale parameter for each mask is used instead of multiplying by the same fixed scale for all levels. This simple modification widens the parameter search space to sufficiently explore various sparsity patterns, leading the proposed algorithm to find stronger subnetworks. Moreover, extensive experiments on popular UVG benchmark show that random subnetworks obtained from our framework achieve higher reconstruction and visual quality than fully trained models with similar encoding sizes. Our study is the first to demonstrate the existence of SLTs in video INR models and propose an efficient method for finding them.} }
Endnote
%0 Conference Paper %T Is Overfitting Necessary for Implicit Video Representation? %A Hee Min Choi %A Hyoa Kang %A Dokwan Oh %B Proceedings of the 40th International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2023 %E Andreas Krause %E Emma Brunskill %E Kyunghyun Cho %E Barbara Engelhardt %E Sivan Sabato %E Jonathan Scarlett %F pmlr-v202-choi23b %I PMLR %P 5748--5770 %U https://proceedings.mlr.press/v202/choi23b.html %V 202 %X Compact representation of multimedia signals using implicit neural representations (INRs) has advanced significantly over the past few years, and recent works address their applications to video. Existing studies on video INR have focused on network architecture design as all video information is contained within network parameters. Here, we propose a new paradigm in efficient INR for videos based on the idea of strong lottery ticket (SLT) hypothesis (Zhou et al., 2019), which demonstrates the possibility of finding an accurate subnetwork mask, called supermask, for a randomly initialized classification network without weight training. Specifically, we train multiple supermasks with a hierarchical structure for a randomly initialized image-wise video representation model without weight updates. Different from a previous approach employing hierarchical supermasks (Okoshi et al., 2022), a trainable scale parameter for each mask is used instead of multiplying by the same fixed scale for all levels. This simple modification widens the parameter search space to sufficiently explore various sparsity patterns, leading the proposed algorithm to find stronger subnetworks. Moreover, extensive experiments on popular UVG benchmark show that random subnetworks obtained from our framework achieve higher reconstruction and visual quality than fully trained models with similar encoding sizes. Our study is the first to demonstrate the existence of SLTs in video INR models and propose an efficient method for finding them.
APA
Choi, H.M., Kang, H. & Oh, D.. (2023). Is Overfitting Necessary for Implicit Video Representation?. Proceedings of the 40th International Conference on Machine Learning, in Proceedings of Machine Learning Research 202:5748-5770 Available from https://proceedings.mlr.press/v202/choi23b.html.

Related Material