Refined Regret for Adversarial MDPs with Linear Function Approximation

Yan Dai, Haipeng Luo, Chen-Yu Wei, Julian Zimmert
Proceedings of the 40th International Conference on Machine Learning, PMLR 202:6726-6759, 2023.

Abstract

We consider learning in an adversarial Markov Decision Process (MDP) where the loss functions can change arbitrarily over $K$ episodes and the state space can be arbitrarily large. We assume that the Q-function of any policy is linear in some known features, that is, a linear function approximation exists. The best existing regret upper bound for this setting (Luo et al., 2021) is of order $\tilde{\mathcal O}(K^{2/3})$ (omitting all other dependencies), given access to a simulator. This paper provides two algorithms that improve the regret to $\tilde{\mathcal O}(\sqrt K)$ in the same setting. Our first algorithm makes use of a refined analysis of the Follow-the-Regularized-Leader (FTRL) algorithm with the log-barrier regularizer. This analysis allows the loss estimators to be arbitrarily negative and might be of independent interest. Our second algorithm develops a magnitude-reduced loss estimator, further removing the polynomial dependency on the number of actions in the first algorithm and leading to the optimal regret bound (up to logarithmic terms and dependency on the horizon). Moreover, we also extend the first algorithm to simulator-free linear MDPs, which achieves $\tilde{\mathcal O}(K^{8/9})$ regret and greatly improves over the best existing bound $\tilde{\mathcal O}(K^{14/15})$. This algorithm relies on a better alternative to the Matrix Geometric Resampling procedure by Neu & Olkhovskaya (2020), which could again be of independent interest.

Cite this Paper


BibTeX
@InProceedings{pmlr-v202-dai23b, title = {Refined Regret for Adversarial {MDP}s with Linear Function Approximation}, author = {Dai, Yan and Luo, Haipeng and Wei, Chen-Yu and Zimmert, Julian}, booktitle = {Proceedings of the 40th International Conference on Machine Learning}, pages = {6726--6759}, year = {2023}, editor = {Krause, Andreas and Brunskill, Emma and Cho, Kyunghyun and Engelhardt, Barbara and Sabato, Sivan and Scarlett, Jonathan}, volume = {202}, series = {Proceedings of Machine Learning Research}, month = {23--29 Jul}, publisher = {PMLR}, pdf = {https://proceedings.mlr.press/v202/dai23b/dai23b.pdf}, url = {https://proceedings.mlr.press/v202/dai23b.html}, abstract = {We consider learning in an adversarial Markov Decision Process (MDP) where the loss functions can change arbitrarily over $K$ episodes and the state space can be arbitrarily large. We assume that the Q-function of any policy is linear in some known features, that is, a linear function approximation exists. The best existing regret upper bound for this setting (Luo et al., 2021) is of order $\tilde{\mathcal O}(K^{2/3})$ (omitting all other dependencies), given access to a simulator. This paper provides two algorithms that improve the regret to $\tilde{\mathcal O}(\sqrt K)$ in the same setting. Our first algorithm makes use of a refined analysis of the Follow-the-Regularized-Leader (FTRL) algorithm with the log-barrier regularizer. This analysis allows the loss estimators to be arbitrarily negative and might be of independent interest. Our second algorithm develops a magnitude-reduced loss estimator, further removing the polynomial dependency on the number of actions in the first algorithm and leading to the optimal regret bound (up to logarithmic terms and dependency on the horizon). Moreover, we also extend the first algorithm to simulator-free linear MDPs, which achieves $\tilde{\mathcal O}(K^{8/9})$ regret and greatly improves over the best existing bound $\tilde{\mathcal O}(K^{14/15})$. This algorithm relies on a better alternative to the Matrix Geometric Resampling procedure by Neu & Olkhovskaya (2020), which could again be of independent interest.} }
Endnote
%0 Conference Paper %T Refined Regret for Adversarial MDPs with Linear Function Approximation %A Yan Dai %A Haipeng Luo %A Chen-Yu Wei %A Julian Zimmert %B Proceedings of the 40th International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2023 %E Andreas Krause %E Emma Brunskill %E Kyunghyun Cho %E Barbara Engelhardt %E Sivan Sabato %E Jonathan Scarlett %F pmlr-v202-dai23b %I PMLR %P 6726--6759 %U https://proceedings.mlr.press/v202/dai23b.html %V 202 %X We consider learning in an adversarial Markov Decision Process (MDP) where the loss functions can change arbitrarily over $K$ episodes and the state space can be arbitrarily large. We assume that the Q-function of any policy is linear in some known features, that is, a linear function approximation exists. The best existing regret upper bound for this setting (Luo et al., 2021) is of order $\tilde{\mathcal O}(K^{2/3})$ (omitting all other dependencies), given access to a simulator. This paper provides two algorithms that improve the regret to $\tilde{\mathcal O}(\sqrt K)$ in the same setting. Our first algorithm makes use of a refined analysis of the Follow-the-Regularized-Leader (FTRL) algorithm with the log-barrier regularizer. This analysis allows the loss estimators to be arbitrarily negative and might be of independent interest. Our second algorithm develops a magnitude-reduced loss estimator, further removing the polynomial dependency on the number of actions in the first algorithm and leading to the optimal regret bound (up to logarithmic terms and dependency on the horizon). Moreover, we also extend the first algorithm to simulator-free linear MDPs, which achieves $\tilde{\mathcal O}(K^{8/9})$ regret and greatly improves over the best existing bound $\tilde{\mathcal O}(K^{14/15})$. This algorithm relies on a better alternative to the Matrix Geometric Resampling procedure by Neu & Olkhovskaya (2020), which could again be of independent interest.
APA
Dai, Y., Luo, H., Wei, C. & Zimmert, J.. (2023). Refined Regret for Adversarial MDPs with Linear Function Approximation. Proceedings of the 40th International Conference on Machine Learning, in Proceedings of Machine Learning Research 202:6726-6759 Available from https://proceedings.mlr.press/v202/dai23b.html.

Related Material