Trajectory-Aware Eligibility Traces for Off-Policy Reinforcement Learning

Brett Daley, Martha White, Christopher Amato, Marlos C. Machado
Proceedings of the 40th International Conference on Machine Learning, PMLR 202:6818-6835, 2023.

Abstract

Off-policy learning from multistep returns is crucial for sample-efficient reinforcement learning, but counteracting off-policy bias without exacerbating variance is challenging. Classically, off-policy bias is corrected in a per-decision manner: past temporal-difference errors are re-weighted by the instantaneous Importance Sampling (IS) ratio after each action via eligibility traces. Many off-policy algorithms rely on this mechanism, along with differing protocols for cutting the IS ratios (traces) to combat the variance of the IS estimator. Unfortunately, once a trace has been cut, the effect cannot be easily reversed. This has led to the development of credit-assignment strategies that account for multiple past experiences at a time. These trajectory-aware methods have not been extensively analyzed, and their theoretical justification remains uncertain. In this paper, we propose a multistep operator that unifies per-decision and trajectory-aware methods. We prove convergence conditions for our operator in the tabular setting, establishing the first guarantees for several existing methods as well as many new ones. Finally, we introduce Recency-Bounded Importance Sampling (RBIS), which leverages trajectory awareness to perform robustly across $\lambda$-values in an off-policy control task.

Cite this Paper


BibTeX
@InProceedings{pmlr-v202-daley23a, title = {Trajectory-Aware Eligibility Traces for Off-Policy Reinforcement Learning}, author = {Daley, Brett and White, Martha and Amato, Christopher and C. Machado, Marlos}, booktitle = {Proceedings of the 40th International Conference on Machine Learning}, pages = {6818--6835}, year = {2023}, editor = {Krause, Andreas and Brunskill, Emma and Cho, Kyunghyun and Engelhardt, Barbara and Sabato, Sivan and Scarlett, Jonathan}, volume = {202}, series = {Proceedings of Machine Learning Research}, month = {23--29 Jul}, publisher = {PMLR}, pdf = {https://proceedings.mlr.press/v202/daley23a/daley23a.pdf}, url = {https://proceedings.mlr.press/v202/daley23a.html}, abstract = {Off-policy learning from multistep returns is crucial for sample-efficient reinforcement learning, but counteracting off-policy bias without exacerbating variance is challenging. Classically, off-policy bias is corrected in a per-decision manner: past temporal-difference errors are re-weighted by the instantaneous Importance Sampling (IS) ratio after each action via eligibility traces. Many off-policy algorithms rely on this mechanism, along with differing protocols for cutting the IS ratios (traces) to combat the variance of the IS estimator. Unfortunately, once a trace has been cut, the effect cannot be easily reversed. This has led to the development of credit-assignment strategies that account for multiple past experiences at a time. These trajectory-aware methods have not been extensively analyzed, and their theoretical justification remains uncertain. In this paper, we propose a multistep operator that unifies per-decision and trajectory-aware methods. We prove convergence conditions for our operator in the tabular setting, establishing the first guarantees for several existing methods as well as many new ones. Finally, we introduce Recency-Bounded Importance Sampling (RBIS), which leverages trajectory awareness to perform robustly across $\lambda$-values in an off-policy control task.} }
Endnote
%0 Conference Paper %T Trajectory-Aware Eligibility Traces for Off-Policy Reinforcement Learning %A Brett Daley %A Martha White %A Christopher Amato %A Marlos C. Machado %B Proceedings of the 40th International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2023 %E Andreas Krause %E Emma Brunskill %E Kyunghyun Cho %E Barbara Engelhardt %E Sivan Sabato %E Jonathan Scarlett %F pmlr-v202-daley23a %I PMLR %P 6818--6835 %U https://proceedings.mlr.press/v202/daley23a.html %V 202 %X Off-policy learning from multistep returns is crucial for sample-efficient reinforcement learning, but counteracting off-policy bias without exacerbating variance is challenging. Classically, off-policy bias is corrected in a per-decision manner: past temporal-difference errors are re-weighted by the instantaneous Importance Sampling (IS) ratio after each action via eligibility traces. Many off-policy algorithms rely on this mechanism, along with differing protocols for cutting the IS ratios (traces) to combat the variance of the IS estimator. Unfortunately, once a trace has been cut, the effect cannot be easily reversed. This has led to the development of credit-assignment strategies that account for multiple past experiences at a time. These trajectory-aware methods have not been extensively analyzed, and their theoretical justification remains uncertain. In this paper, we propose a multistep operator that unifies per-decision and trajectory-aware methods. We prove convergence conditions for our operator in the tabular setting, establishing the first guarantees for several existing methods as well as many new ones. Finally, we introduce Recency-Bounded Importance Sampling (RBIS), which leverages trajectory awareness to perform robustly across $\lambda$-values in an off-policy control task.
APA
Daley, B., White, M., Amato, C. & C. Machado, M.. (2023). Trajectory-Aware Eligibility Traces for Off-Policy Reinforcement Learning. Proceedings of the 40th International Conference on Machine Learning, in Proceedings of Machine Learning Research 202:6818-6835 Available from https://proceedings.mlr.press/v202/daley23a.html.

Related Material