[edit]
A Flexible Diffusion Model
Proceedings of the 40th International Conference on Machine Learning, PMLR 202:8678-8696, 2023.
Abstract
Denoising diffusion (score-based) generative models have become a popular choice for modeling complex data. Recently, a deep connection between forward-backward stochastic differential equations (SDEs) and diffusion-based models has been established, leading to the development of new SDE variants such as sub-VP and critically-damped Langevin. Despite the empirical success of some hand-crafted forward SDEs, many potentially promising forward SDEs remain unexplored. In this work, we propose a general framework for parameterizing diffusion models, particularly the spatial part of forward SDEs, by leveraging the symplectic and Riemannian geometry of the data manifold. We introduce a systematic formalism with theoretical guarantees and connect it with previous diffusion models. Finally, we demonstrate the theoretical advantages of our method from a variational optimization perspective. We present numerical experiments on synthetic datasets, MNIST and CIFAR10 to validate the effectiveness of our framework.