Constant Matters: Fine-grained Error Bound on Differentially Private Continual Observation

Hendrik Fichtenberger, Monika Henzinger, Jalaj Upadhyay
Proceedings of the 40th International Conference on Machine Learning, PMLR 202:10072-10092, 2023.

Abstract

We study fine-grained error bounds for differentially private algorithms for counting under continual observation. Our main insight is that the matrix mechanism when using lower-triangular matrices can be used in the continual observation model. More specifically, we give an explicit factorization for the counting matrix $M_\mathsf{count}$ and upper bound the error explicitly. We also give a fine-grained analysis, specifying the exact constant in the upper bound. Our analysis is based on upper and lower bounds of the completely bounded norm (cb-norm) of $M_\mathsf{count}$. Along the way, we improve the best-known bound of 28 years by Mathias (SIAM Journal on Matrix Analysis and Applications, 1993) on the cb-norm of $M_\mathsf{count}$ for a large range of the dimension of $M_\mathsf{count}$. Furthermore, we are the first to give concrete error bounds for various problems under continual observation such as binary counting, maintaining a histogram, releasing an approximately cut-preserving synthetic graph, many graph-based statistics, and substring and episode counting. Finally, we note that our result can be used to get a fine-grained error bound for non-interactive local learning and the first lower bounds on the additive error for $(\epsilon,\delta)$-differentially-private counting under continual observation. Subsequent to this work, Henzinger et al. (SODA, 2023) showed that our factorization also achieves fine-grained mean-squared error.

Cite this Paper


BibTeX
@InProceedings{pmlr-v202-fichtenberger23a, title = {Constant Matters: Fine-grained Error Bound on Differentially Private Continual Observation}, author = {Fichtenberger, Hendrik and Henzinger, Monika and Upadhyay, Jalaj}, booktitle = {Proceedings of the 40th International Conference on Machine Learning}, pages = {10072--10092}, year = {2023}, editor = {Krause, Andreas and Brunskill, Emma and Cho, Kyunghyun and Engelhardt, Barbara and Sabato, Sivan and Scarlett, Jonathan}, volume = {202}, series = {Proceedings of Machine Learning Research}, month = {23--29 Jul}, publisher = {PMLR}, pdf = {https://proceedings.mlr.press/v202/fichtenberger23a/fichtenberger23a.pdf}, url = {https://proceedings.mlr.press/v202/fichtenberger23a.html}, abstract = {We study fine-grained error bounds for differentially private algorithms for counting under continual observation. Our main insight is that the matrix mechanism when using lower-triangular matrices can be used in the continual observation model. More specifically, we give an explicit factorization for the counting matrix $M_\mathsf{count}$ and upper bound the error explicitly. We also give a fine-grained analysis, specifying the exact constant in the upper bound. Our analysis is based on upper and lower bounds of the completely bounded norm (cb-norm) of $M_\mathsf{count}$. Along the way, we improve the best-known bound of 28 years by Mathias (SIAM Journal on Matrix Analysis and Applications, 1993) on the cb-norm of $M_\mathsf{count}$ for a large range of the dimension of $M_\mathsf{count}$. Furthermore, we are the first to give concrete error bounds for various problems under continual observation such as binary counting, maintaining a histogram, releasing an approximately cut-preserving synthetic graph, many graph-based statistics, and substring and episode counting. Finally, we note that our result can be used to get a fine-grained error bound for non-interactive local learning and the first lower bounds on the additive error for $(\epsilon,\delta)$-differentially-private counting under continual observation. Subsequent to this work, Henzinger et al. (SODA, 2023) showed that our factorization also achieves fine-grained mean-squared error.} }
Endnote
%0 Conference Paper %T Constant Matters: Fine-grained Error Bound on Differentially Private Continual Observation %A Hendrik Fichtenberger %A Monika Henzinger %A Jalaj Upadhyay %B Proceedings of the 40th International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2023 %E Andreas Krause %E Emma Brunskill %E Kyunghyun Cho %E Barbara Engelhardt %E Sivan Sabato %E Jonathan Scarlett %F pmlr-v202-fichtenberger23a %I PMLR %P 10072--10092 %U https://proceedings.mlr.press/v202/fichtenberger23a.html %V 202 %X We study fine-grained error bounds for differentially private algorithms for counting under continual observation. Our main insight is that the matrix mechanism when using lower-triangular matrices can be used in the continual observation model. More specifically, we give an explicit factorization for the counting matrix $M_\mathsf{count}$ and upper bound the error explicitly. We also give a fine-grained analysis, specifying the exact constant in the upper bound. Our analysis is based on upper and lower bounds of the completely bounded norm (cb-norm) of $M_\mathsf{count}$. Along the way, we improve the best-known bound of 28 years by Mathias (SIAM Journal on Matrix Analysis and Applications, 1993) on the cb-norm of $M_\mathsf{count}$ for a large range of the dimension of $M_\mathsf{count}$. Furthermore, we are the first to give concrete error bounds for various problems under continual observation such as binary counting, maintaining a histogram, releasing an approximately cut-preserving synthetic graph, many graph-based statistics, and substring and episode counting. Finally, we note that our result can be used to get a fine-grained error bound for non-interactive local learning and the first lower bounds on the additive error for $(\epsilon,\delta)$-differentially-private counting under continual observation. Subsequent to this work, Henzinger et al. (SODA, 2023) showed that our factorization also achieves fine-grained mean-squared error.
APA
Fichtenberger, H., Henzinger, M. & Upadhyay, J.. (2023). Constant Matters: Fine-grained Error Bound on Differentially Private Continual Observation. Proceedings of the 40th International Conference on Machine Learning, in Proceedings of Machine Learning Research 202:10072-10092 Available from https://proceedings.mlr.press/v202/fichtenberger23a.html.

Related Material