Global Context Vision Transformers

Ali Hatamizadeh, Hongxu Yin, Greg Heinrich, Jan Kautz, Pavlo Molchanov
Proceedings of the 40th International Conference on Machine Learning, PMLR 202:12633-12646, 2023.

Abstract

We propose global context vision transformer (GC ViT), a novel architecture that enhances parameter and compute utilization for computer vision. Our method leverages global context self-attention modules, joint with standard local self-attention, to effectively and efficiently model both long and short-range spatial interactions, without the need for expensive operations such as computing attention masks or shifting local windows. In addition, we address the lack of the inductive bias in ViTs, and propose to leverage a modified fused inverted residual blocks in our architecture. Our proposed GC ViT achieves state-of-the-art results across image classification, object detection and semantic segmentation tasks. On ImageNet-1K dataset for classification, the variants of GC ViT with 51M, 90M and 201M parameters achieve 84.3%, 85.0% and 85.7% Top-1 accuracy, respectively, at 224 image resolution and without any pre-training, hence surpassing comparably-sized prior art such as CNN-based ConvNeXt and ViT-based MaxViT and Swin Transformer by a large margin. Pre-trained GC ViT backbones in downstream tasks of object detection, instance segmentation, and semantic segmentation using MS COCO and ADE20K datasets outperform prior work consistently. Specifically, GC ViT with a 4-scale DINO detection head achieves a box AP of 58.3 on MS COCO dataset.

Cite this Paper


BibTeX
@InProceedings{pmlr-v202-hatamizadeh23a, title = {Global Context Vision Transformers}, author = {Hatamizadeh, Ali and Yin, Hongxu and Heinrich, Greg and Kautz, Jan and Molchanov, Pavlo}, booktitle = {Proceedings of the 40th International Conference on Machine Learning}, pages = {12633--12646}, year = {2023}, editor = {Krause, Andreas and Brunskill, Emma and Cho, Kyunghyun and Engelhardt, Barbara and Sabato, Sivan and Scarlett, Jonathan}, volume = {202}, series = {Proceedings of Machine Learning Research}, month = {23--29 Jul}, publisher = {PMLR}, pdf = {https://proceedings.mlr.press/v202/hatamizadeh23a/hatamizadeh23a.pdf}, url = {https://proceedings.mlr.press/v202/hatamizadeh23a.html}, abstract = {We propose global context vision transformer (GC ViT), a novel architecture that enhances parameter and compute utilization for computer vision. Our method leverages global context self-attention modules, joint with standard local self-attention, to effectively and efficiently model both long and short-range spatial interactions, without the need for expensive operations such as computing attention masks or shifting local windows. In addition, we address the lack of the inductive bias in ViTs, and propose to leverage a modified fused inverted residual blocks in our architecture. Our proposed GC ViT achieves state-of-the-art results across image classification, object detection and semantic segmentation tasks. On ImageNet-1K dataset for classification, the variants of GC ViT with 51M, 90M and 201M parameters achieve 84.3%, 85.0% and 85.7% Top-1 accuracy, respectively, at 224 image resolution and without any pre-training, hence surpassing comparably-sized prior art such as CNN-based ConvNeXt and ViT-based MaxViT and Swin Transformer by a large margin. Pre-trained GC ViT backbones in downstream tasks of object detection, instance segmentation, and semantic segmentation using MS COCO and ADE20K datasets outperform prior work consistently. Specifically, GC ViT with a 4-scale DINO detection head achieves a box AP of 58.3 on MS COCO dataset.} }
Endnote
%0 Conference Paper %T Global Context Vision Transformers %A Ali Hatamizadeh %A Hongxu Yin %A Greg Heinrich %A Jan Kautz %A Pavlo Molchanov %B Proceedings of the 40th International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2023 %E Andreas Krause %E Emma Brunskill %E Kyunghyun Cho %E Barbara Engelhardt %E Sivan Sabato %E Jonathan Scarlett %F pmlr-v202-hatamizadeh23a %I PMLR %P 12633--12646 %U https://proceedings.mlr.press/v202/hatamizadeh23a.html %V 202 %X We propose global context vision transformer (GC ViT), a novel architecture that enhances parameter and compute utilization for computer vision. Our method leverages global context self-attention modules, joint with standard local self-attention, to effectively and efficiently model both long and short-range spatial interactions, without the need for expensive operations such as computing attention masks or shifting local windows. In addition, we address the lack of the inductive bias in ViTs, and propose to leverage a modified fused inverted residual blocks in our architecture. Our proposed GC ViT achieves state-of-the-art results across image classification, object detection and semantic segmentation tasks. On ImageNet-1K dataset for classification, the variants of GC ViT with 51M, 90M and 201M parameters achieve 84.3%, 85.0% and 85.7% Top-1 accuracy, respectively, at 224 image resolution and without any pre-training, hence surpassing comparably-sized prior art such as CNN-based ConvNeXt and ViT-based MaxViT and Swin Transformer by a large margin. Pre-trained GC ViT backbones in downstream tasks of object detection, instance segmentation, and semantic segmentation using MS COCO and ADE20K datasets outperform prior work consistently. Specifically, GC ViT with a 4-scale DINO detection head achieves a box AP of 58.3 on MS COCO dataset.
APA
Hatamizadeh, A., Yin, H., Heinrich, G., Kautz, J. & Molchanov, P.. (2023). Global Context Vision Transformers. Proceedings of the 40th International Conference on Machine Learning, in Proceedings of Machine Learning Research 202:12633-12646 Available from https://proceedings.mlr.press/v202/hatamizadeh23a.html.

Related Material