VIMA: Robot Manipulation with Multimodal Prompts

Yunfan Jiang, Agrim Gupta, Zichen Zhang, Guanzhi Wang, Yongqiang Dou, Yanjun Chen, Li Fei-Fei, Anima Anandkumar, Yuke Zhu, Linxi Fan
Proceedings of the 40th International Conference on Machine Learning, PMLR 202:14975-15022, 2023.

Abstract

Prompt-based learning has emerged as a successful paradigm in natural language processing, where a single general-purpose language model can be instructed to perform any task specified by input prompts. Yet task specification in robotics comes in various forms, such as imitating one-shot demonstrations, following language instructions, and reaching visual goals. They are often considered different tasks and tackled by specialized models. We show that a wide spectrum of robot manipulation tasks can be expressed with multimodal prompts, interleaving textual and visual tokens. Accordingly, we develop a new simulation benchmark that consists of thousands of procedurally-generated tabletop tasks with multimodal prompts, 600K+ expert trajectories for imitation learning, and a four-level evaluation protocol for systematic generalization. We design a transformer-based robot agent, VIMA, that processes these prompts and outputs motor actions autoregressively. VIMA features a recipe that achieves strong model scalability and data efficiency. It outperforms alternative designs in the hardest zero-shot generalization setting by up to $2.9\times$ task success rate given the same training data. With $10\times$ less training data, VIMA still performs $2.7\times$ better than the best competing variant. Code and video demos are available at https://vimalabs.github.io

Cite this Paper


BibTeX
@InProceedings{pmlr-v202-jiang23b, title = {{VIMA}: Robot Manipulation with Multimodal Prompts}, author = {Jiang, Yunfan and Gupta, Agrim and Zhang, Zichen and Wang, Guanzhi and Dou, Yongqiang and Chen, Yanjun and Fei-Fei, Li and Anandkumar, Anima and Zhu, Yuke and Fan, Linxi}, booktitle = {Proceedings of the 40th International Conference on Machine Learning}, pages = {14975--15022}, year = {2023}, editor = {Krause, Andreas and Brunskill, Emma and Cho, Kyunghyun and Engelhardt, Barbara and Sabato, Sivan and Scarlett, Jonathan}, volume = {202}, series = {Proceedings of Machine Learning Research}, month = {23--29 Jul}, publisher = {PMLR}, pdf = {https://proceedings.mlr.press/v202/jiang23b/jiang23b.pdf}, url = {https://proceedings.mlr.press/v202/jiang23b.html}, abstract = {Prompt-based learning has emerged as a successful paradigm in natural language processing, where a single general-purpose language model can be instructed to perform any task specified by input prompts. Yet task specification in robotics comes in various forms, such as imitating one-shot demonstrations, following language instructions, and reaching visual goals. They are often considered different tasks and tackled by specialized models. We show that a wide spectrum of robot manipulation tasks can be expressed with multimodal prompts, interleaving textual and visual tokens. Accordingly, we develop a new simulation benchmark that consists of thousands of procedurally-generated tabletop tasks with multimodal prompts, 600K+ expert trajectories for imitation learning, and a four-level evaluation protocol for systematic generalization. We design a transformer-based robot agent, VIMA, that processes these prompts and outputs motor actions autoregressively. VIMA features a recipe that achieves strong model scalability and data efficiency. It outperforms alternative designs in the hardest zero-shot generalization setting by up to $2.9\times$ task success rate given the same training data. With $10\times$ less training data, VIMA still performs $2.7\times$ better than the best competing variant. Code and video demos are available at https://vimalabs.github.io} }
Endnote
%0 Conference Paper %T VIMA: Robot Manipulation with Multimodal Prompts %A Yunfan Jiang %A Agrim Gupta %A Zichen Zhang %A Guanzhi Wang %A Yongqiang Dou %A Yanjun Chen %A Li Fei-Fei %A Anima Anandkumar %A Yuke Zhu %A Linxi Fan %B Proceedings of the 40th International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2023 %E Andreas Krause %E Emma Brunskill %E Kyunghyun Cho %E Barbara Engelhardt %E Sivan Sabato %E Jonathan Scarlett %F pmlr-v202-jiang23b %I PMLR %P 14975--15022 %U https://proceedings.mlr.press/v202/jiang23b.html %V 202 %X Prompt-based learning has emerged as a successful paradigm in natural language processing, where a single general-purpose language model can be instructed to perform any task specified by input prompts. Yet task specification in robotics comes in various forms, such as imitating one-shot demonstrations, following language instructions, and reaching visual goals. They are often considered different tasks and tackled by specialized models. We show that a wide spectrum of robot manipulation tasks can be expressed with multimodal prompts, interleaving textual and visual tokens. Accordingly, we develop a new simulation benchmark that consists of thousands of procedurally-generated tabletop tasks with multimodal prompts, 600K+ expert trajectories for imitation learning, and a four-level evaluation protocol for systematic generalization. We design a transformer-based robot agent, VIMA, that processes these prompts and outputs motor actions autoregressively. VIMA features a recipe that achieves strong model scalability and data efficiency. It outperforms alternative designs in the hardest zero-shot generalization setting by up to $2.9\times$ task success rate given the same training data. With $10\times$ less training data, VIMA still performs $2.7\times$ better than the best competing variant. Code and video demos are available at https://vimalabs.github.io
APA
Jiang, Y., Gupta, A., Zhang, Z., Wang, G., Dou, Y., Chen, Y., Fei-Fei, L., Anandkumar, A., Zhu, Y. & Fan, L.. (2023). VIMA: Robot Manipulation with Multimodal Prompts. Proceedings of the 40th International Conference on Machine Learning, in Proceedings of Machine Learning Research 202:14975-15022 Available from https://proceedings.mlr.press/v202/jiang23b.html.

Related Material