Tied-Augment: Controlling Representation Similarity Improves Data Augmentation

Emirhan Kurtuluş, Zichao Li, Yann Dauphin, Ekin Dogus Cubuk
Proceedings of the 40th International Conference on Machine Learning, PMLR 202:17994-18007, 2023.

Abstract

Data augmentation methods have played an important role in the recent advance of deep learning models, and have become an indispensable component of state-of-the-art models in semi-supervised, self-supervised, and supervised training for vision. Despite incurring no additional latency at test time, data augmentation often requires more epochs of training to be effective. For example, even the simple flips-and-crops augmentation requires training for more than 5 epochs to improve performance, whereas RandAugment requires more than 90 epochs. We propose a general framework called Tied-Augment, which improves the efficacy of data augmentation in a wide range of applications by adding a simple term to the loss that can control the similarity of representations under distortions. Tied-Augment can improve state-of-the-art methods from data augmentation (e.g. RandAugment, mixup), optimization (e.g. SAM), and semi-supervised learning (e.g. FixMatch). For example, Tied-RandAugment can outperform RandAugment by 2.0% on ImageNet. Notably, using Tied-Augment, data augmentation can be made to improve generalization even when training for a few epochs and when fine-tuning. We open source our code at https://github.com/ekurtulus/tied-augment/tree/main.

Cite this Paper


BibTeX
@InProceedings{pmlr-v202-kurtulus23a, title = {Tied-Augment: Controlling Representation Similarity Improves Data Augmentation}, author = {Kurtulu\c{s}, Emirhan and Li, Zichao and Dauphin, Yann and Cubuk, Ekin Dogus}, booktitle = {Proceedings of the 40th International Conference on Machine Learning}, pages = {17994--18007}, year = {2023}, editor = {Krause, Andreas and Brunskill, Emma and Cho, Kyunghyun and Engelhardt, Barbara and Sabato, Sivan and Scarlett, Jonathan}, volume = {202}, series = {Proceedings of Machine Learning Research}, month = {23--29 Jul}, publisher = {PMLR}, pdf = {https://proceedings.mlr.press/v202/kurtulus23a/kurtulus23a.pdf}, url = {https://proceedings.mlr.press/v202/kurtulus23a.html}, abstract = {Data augmentation methods have played an important role in the recent advance of deep learning models, and have become an indispensable component of state-of-the-art models in semi-supervised, self-supervised, and supervised training for vision. Despite incurring no additional latency at test time, data augmentation often requires more epochs of training to be effective. For example, even the simple flips-and-crops augmentation requires training for more than 5 epochs to improve performance, whereas RandAugment requires more than 90 epochs. We propose a general framework called Tied-Augment, which improves the efficacy of data augmentation in a wide range of applications by adding a simple term to the loss that can control the similarity of representations under distortions. Tied-Augment can improve state-of-the-art methods from data augmentation (e.g. RandAugment, mixup), optimization (e.g. SAM), and semi-supervised learning (e.g. FixMatch). For example, Tied-RandAugment can outperform RandAugment by 2.0% on ImageNet. Notably, using Tied-Augment, data augmentation can be made to improve generalization even when training for a few epochs and when fine-tuning. We open source our code at https://github.com/ekurtulus/tied-augment/tree/main.} }
Endnote
%0 Conference Paper %T Tied-Augment: Controlling Representation Similarity Improves Data Augmentation %A Emirhan Kurtuluş %A Zichao Li %A Yann Dauphin %A Ekin Dogus Cubuk %B Proceedings of the 40th International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2023 %E Andreas Krause %E Emma Brunskill %E Kyunghyun Cho %E Barbara Engelhardt %E Sivan Sabato %E Jonathan Scarlett %F pmlr-v202-kurtulus23a %I PMLR %P 17994--18007 %U https://proceedings.mlr.press/v202/kurtulus23a.html %V 202 %X Data augmentation methods have played an important role in the recent advance of deep learning models, and have become an indispensable component of state-of-the-art models in semi-supervised, self-supervised, and supervised training for vision. Despite incurring no additional latency at test time, data augmentation often requires more epochs of training to be effective. For example, even the simple flips-and-crops augmentation requires training for more than 5 epochs to improve performance, whereas RandAugment requires more than 90 epochs. We propose a general framework called Tied-Augment, which improves the efficacy of data augmentation in a wide range of applications by adding a simple term to the loss that can control the similarity of representations under distortions. Tied-Augment can improve state-of-the-art methods from data augmentation (e.g. RandAugment, mixup), optimization (e.g. SAM), and semi-supervised learning (e.g. FixMatch). For example, Tied-RandAugment can outperform RandAugment by 2.0% on ImageNet. Notably, using Tied-Augment, data augmentation can be made to improve generalization even when training for a few epochs and when fine-tuning. We open source our code at https://github.com/ekurtulus/tied-augment/tree/main.
APA
Kurtuluş, E., Li, Z., Dauphin, Y. & Cubuk, E.D.. (2023). Tied-Augment: Controlling Representation Similarity Improves Data Augmentation. Proceedings of the 40th International Conference on Machine Learning, in Proceedings of Machine Learning Research 202:17994-18007 Available from https://proceedings.mlr.press/v202/kurtulus23a.html.

Related Material