Optimal Convergence Rates for Agnostic Nyström Kernel Learning

Jian Li, Yong Liu, Weiping Wang
Proceedings of the 40th International Conference on Machine Learning, PMLR 202:19811-19836, 2023.

Abstract

Nyström low-rank approximation has shown great potential in processing large-scale kernel matrix and neural networks. However, there lacks a unified analysis for Nyström approximation, and the asymptotical minimax optimality for Nyström methods usually require a strict condition, assuming that the target regression lies exactly in the hypothesis space. In this paper, to tackle these problems, we provide a refined generalization analysis for Nyström approximation in the agnostic setting, where the target regression may be out of the hypothesis space. Specifically, we show Nyström approximation can still achieve the capacity-dependent optimal rates in the agnostic setting. To this end, we first prove the capacity-dependent optimal guarantees of Nyström approximation with the standard uniform sampling, which covers both loss functions and applies to some agnostic settings. Then, using data-dependent sampling, for example, leverage scores sampling, we derive the capacity-dependent optimal rates that apply to the whole range of the agnostic setting. To our best knowledge, the capacity-dependent optimality for the whole range of the agnostic setting is first achieved and novel in Nyström approximation.

Cite this Paper


BibTeX
@InProceedings{pmlr-v202-li23u, title = {Optimal Convergence Rates for Agnostic Nyström Kernel Learning}, author = {Li, Jian and Liu, Yong and Wang, Weiping}, booktitle = {Proceedings of the 40th International Conference on Machine Learning}, pages = {19811--19836}, year = {2023}, editor = {Krause, Andreas and Brunskill, Emma and Cho, Kyunghyun and Engelhardt, Barbara and Sabato, Sivan and Scarlett, Jonathan}, volume = {202}, series = {Proceedings of Machine Learning Research}, month = {23--29 Jul}, publisher = {PMLR}, pdf = {https://proceedings.mlr.press/v202/li23u/li23u.pdf}, url = {https://proceedings.mlr.press/v202/li23u.html}, abstract = {Nyström low-rank approximation has shown great potential in processing large-scale kernel matrix and neural networks. However, there lacks a unified analysis for Nyström approximation, and the asymptotical minimax optimality for Nyström methods usually require a strict condition, assuming that the target regression lies exactly in the hypothesis space. In this paper, to tackle these problems, we provide a refined generalization analysis for Nyström approximation in the agnostic setting, where the target regression may be out of the hypothesis space. Specifically, we show Nyström approximation can still achieve the capacity-dependent optimal rates in the agnostic setting. To this end, we first prove the capacity-dependent optimal guarantees of Nyström approximation with the standard uniform sampling, which covers both loss functions and applies to some agnostic settings. Then, using data-dependent sampling, for example, leverage scores sampling, we derive the capacity-dependent optimal rates that apply to the whole range of the agnostic setting. To our best knowledge, the capacity-dependent optimality for the whole range of the agnostic setting is first achieved and novel in Nyström approximation.} }
Endnote
%0 Conference Paper %T Optimal Convergence Rates for Agnostic Nyström Kernel Learning %A Jian Li %A Yong Liu %A Weiping Wang %B Proceedings of the 40th International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2023 %E Andreas Krause %E Emma Brunskill %E Kyunghyun Cho %E Barbara Engelhardt %E Sivan Sabato %E Jonathan Scarlett %F pmlr-v202-li23u %I PMLR %P 19811--19836 %U https://proceedings.mlr.press/v202/li23u.html %V 202 %X Nyström low-rank approximation has shown great potential in processing large-scale kernel matrix and neural networks. However, there lacks a unified analysis for Nyström approximation, and the asymptotical minimax optimality for Nyström methods usually require a strict condition, assuming that the target regression lies exactly in the hypothesis space. In this paper, to tackle these problems, we provide a refined generalization analysis for Nyström approximation in the agnostic setting, where the target regression may be out of the hypothesis space. Specifically, we show Nyström approximation can still achieve the capacity-dependent optimal rates in the agnostic setting. To this end, we first prove the capacity-dependent optimal guarantees of Nyström approximation with the standard uniform sampling, which covers both loss functions and applies to some agnostic settings. Then, using data-dependent sampling, for example, leverage scores sampling, we derive the capacity-dependent optimal rates that apply to the whole range of the agnostic setting. To our best knowledge, the capacity-dependent optimality for the whole range of the agnostic setting is first achieved and novel in Nyström approximation.
APA
Li, J., Liu, Y. & Wang, W.. (2023). Optimal Convergence Rates for Agnostic Nyström Kernel Learning. Proceedings of the 40th International Conference on Machine Learning, in Proceedings of Machine Learning Research 202:19811-19836 Available from https://proceedings.mlr.press/v202/li23u.html.

Related Material