Statistical Inference and A/B Testing for First-Price Pacing Equilibria

Luofeng Liao, Christian Kroer
Proceedings of the 40th International Conference on Machine Learning, PMLR 202:20868-20905, 2023.

Abstract

We initiate the study of statistical inference and A/B testing for first-price pacing equilibria (FPPE). The FPPE model captures the dynamics resulting from large-scale first-price auction markets where buyers use pacing-based budget management. Such markets arise in the context of internet advertising, where budgets are prevalent. We propose a statistical framework for the FPPE model, in which a limit FPPE with a continuum of items models the long-run steady-state behavior of the auction platform, and an observable FPPE consisting of a finite number of items provides the data to estimate primitives of the limit FPPE, such as revenue, Nash social welfare (a fair metric of efficiency), and other parameters of interest. We develop central limit theorems and asymptotically valid confidence intervals. Furthermore, we establish the asymptotic local minimax optimality of our estimators. We then show that the theory can be used for conducting statistically valid A/B testing on auction platforms. Numerical simulations verify our central limit theorems, and empirical coverage rates for our confidence intervals agree with our theory.

Cite this Paper


BibTeX
@InProceedings{pmlr-v202-liao23a, title = {Statistical Inference and {A}/{B} Testing for First-Price Pacing Equilibria}, author = {Liao, Luofeng and Kroer, Christian}, booktitle = {Proceedings of the 40th International Conference on Machine Learning}, pages = {20868--20905}, year = {2023}, editor = {Krause, Andreas and Brunskill, Emma and Cho, Kyunghyun and Engelhardt, Barbara and Sabato, Sivan and Scarlett, Jonathan}, volume = {202}, series = {Proceedings of Machine Learning Research}, month = {23--29 Jul}, publisher = {PMLR}, pdf = {https://proceedings.mlr.press/v202/liao23a/liao23a.pdf}, url = {https://proceedings.mlr.press/v202/liao23a.html}, abstract = {We initiate the study of statistical inference and A/B testing for first-price pacing equilibria (FPPE). The FPPE model captures the dynamics resulting from large-scale first-price auction markets where buyers use pacing-based budget management. Such markets arise in the context of internet advertising, where budgets are prevalent. We propose a statistical framework for the FPPE model, in which a limit FPPE with a continuum of items models the long-run steady-state behavior of the auction platform, and an observable FPPE consisting of a finite number of items provides the data to estimate primitives of the limit FPPE, such as revenue, Nash social welfare (a fair metric of efficiency), and other parameters of interest. We develop central limit theorems and asymptotically valid confidence intervals. Furthermore, we establish the asymptotic local minimax optimality of our estimators. We then show that the theory can be used for conducting statistically valid A/B testing on auction platforms. Numerical simulations verify our central limit theorems, and empirical coverage rates for our confidence intervals agree with our theory.} }
Endnote
%0 Conference Paper %T Statistical Inference and A/B Testing for First-Price Pacing Equilibria %A Luofeng Liao %A Christian Kroer %B Proceedings of the 40th International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2023 %E Andreas Krause %E Emma Brunskill %E Kyunghyun Cho %E Barbara Engelhardt %E Sivan Sabato %E Jonathan Scarlett %F pmlr-v202-liao23a %I PMLR %P 20868--20905 %U https://proceedings.mlr.press/v202/liao23a.html %V 202 %X We initiate the study of statistical inference and A/B testing for first-price pacing equilibria (FPPE). The FPPE model captures the dynamics resulting from large-scale first-price auction markets where buyers use pacing-based budget management. Such markets arise in the context of internet advertising, where budgets are prevalent. We propose a statistical framework for the FPPE model, in which a limit FPPE with a continuum of items models the long-run steady-state behavior of the auction platform, and an observable FPPE consisting of a finite number of items provides the data to estimate primitives of the limit FPPE, such as revenue, Nash social welfare (a fair metric of efficiency), and other parameters of interest. We develop central limit theorems and asymptotically valid confidence intervals. Furthermore, we establish the asymptotic local minimax optimality of our estimators. We then show that the theory can be used for conducting statistically valid A/B testing on auction platforms. Numerical simulations verify our central limit theorems, and empirical coverage rates for our confidence intervals agree with our theory.
APA
Liao, L. & Kroer, C.. (2023). Statistical Inference and A/B Testing for First-Price Pacing Equilibria. Proceedings of the 40th International Conference on Machine Learning, in Proceedings of Machine Learning Research 202:20868-20905 Available from https://proceedings.mlr.press/v202/liao23a.html.

Related Material