[edit]

# Contextual Combinatorial Bandits with Probabilistically Triggered Arms

*Proceedings of the 40th International Conference on Machine Learning*, PMLR 202:22559-22593, 2023.

#### Abstract

We study contextual combinatorial bandits with probabilistically triggered arms (C$^2$MAB-T) under a variety of smoothness conditions that capture a wide range of applications, such as contextual cascading bandits and contextual influence maximization bandits. Under the triggering probability modulated (TPM) condition, we devise the C$^2$-UCB-T algorithm and propose a novel analysis that achieves an $\tilde{O}(d\sqrt{KT})$ regret bound, removing a potentially exponentially large factor $O(1/p_{\min})$, where $d$ is the dimension of contexts, $p_{\min}$ is the minimum positive probability that any arm can be triggered, and batch-size $K$ is the maximum number of arms that can be triggered per round. Under the variance modulated (VM) or triggering probability and variance modulated (TPVM) conditions, we propose a new variance-adaptive algorithm VAC$^2$-UCB and derive a regret bound $\tilde{O}(d\sqrt{T})$, which is independent of the batch-size $K$. As a valuable by-product, our analysis technique and variance-adaptive algorithm can be applied to the CMAB-T and C$^2$MAB setting, improving existing results there as well. We also include experiments that demonstrate the improved performance of our algorithms compared with benchmark algorithms on synthetic and real-world datasets.