Contextual Combinatorial Bandits with Probabilistically Triggered Arms

Xutong Liu, Jinhang Zuo, Siwei Wang, John C.S. Lui, Mohammad Hajiesmaili, Adam Wierman, Wei Chen
Proceedings of the 40th International Conference on Machine Learning, PMLR 202:22559-22593, 2023.

Abstract

We study contextual combinatorial bandits with probabilistically triggered arms (C$^2$MAB-T) under a variety of smoothness conditions that capture a wide range of applications, such as contextual cascading bandits and contextual influence maximization bandits. Under the triggering probability modulated (TPM) condition, we devise the C$^2$-UCB-T algorithm and propose a novel analysis that achieves an $\tilde{O}(d\sqrt{KT})$ regret bound, removing a potentially exponentially large factor $O(1/p_{\min})$, where $d$ is the dimension of contexts, $p_{\min}$ is the minimum positive probability that any arm can be triggered, and batch-size $K$ is the maximum number of arms that can be triggered per round. Under the variance modulated (VM) or triggering probability and variance modulated (TPVM) conditions, we propose a new variance-adaptive algorithm VAC$^2$-UCB and derive a regret bound $\tilde{O}(d\sqrt{T})$, which is independent of the batch-size $K$. As a valuable by-product, our analysis technique and variance-adaptive algorithm can be applied to the CMAB-T and C$^2$MAB setting, improving existing results there as well. We also include experiments that demonstrate the improved performance of our algorithms compared with benchmark algorithms on synthetic and real-world datasets.

Cite this Paper


BibTeX
@InProceedings{pmlr-v202-liu23bf, title = {Contextual Combinatorial Bandits with Probabilistically Triggered Arms}, author = {Liu, Xutong and Zuo, Jinhang and Wang, Siwei and Lui, John C.S. and Hajiesmaili, Mohammad and Wierman, Adam and Chen, Wei}, booktitle = {Proceedings of the 40th International Conference on Machine Learning}, pages = {22559--22593}, year = {2023}, editor = {Krause, Andreas and Brunskill, Emma and Cho, Kyunghyun and Engelhardt, Barbara and Sabato, Sivan and Scarlett, Jonathan}, volume = {202}, series = {Proceedings of Machine Learning Research}, month = {23--29 Jul}, publisher = {PMLR}, pdf = {https://proceedings.mlr.press/v202/liu23bf/liu23bf.pdf}, url = {https://proceedings.mlr.press/v202/liu23bf.html}, abstract = {We study contextual combinatorial bandits with probabilistically triggered arms (C$^2$MAB-T) under a variety of smoothness conditions that capture a wide range of applications, such as contextual cascading bandits and contextual influence maximization bandits. Under the triggering probability modulated (TPM) condition, we devise the C$^2$-UCB-T algorithm and propose a novel analysis that achieves an $\tilde{O}(d\sqrt{KT})$ regret bound, removing a potentially exponentially large factor $O(1/p_{\min})$, where $d$ is the dimension of contexts, $p_{\min}$ is the minimum positive probability that any arm can be triggered, and batch-size $K$ is the maximum number of arms that can be triggered per round. Under the variance modulated (VM) or triggering probability and variance modulated (TPVM) conditions, we propose a new variance-adaptive algorithm VAC$^2$-UCB and derive a regret bound $\tilde{O}(d\sqrt{T})$, which is independent of the batch-size $K$. As a valuable by-product, our analysis technique and variance-adaptive algorithm can be applied to the CMAB-T and C$^2$MAB setting, improving existing results there as well. We also include experiments that demonstrate the improved performance of our algorithms compared with benchmark algorithms on synthetic and real-world datasets.} }
Endnote
%0 Conference Paper %T Contextual Combinatorial Bandits with Probabilistically Triggered Arms %A Xutong Liu %A Jinhang Zuo %A Siwei Wang %A John C.S. Lui %A Mohammad Hajiesmaili %A Adam Wierman %A Wei Chen %B Proceedings of the 40th International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2023 %E Andreas Krause %E Emma Brunskill %E Kyunghyun Cho %E Barbara Engelhardt %E Sivan Sabato %E Jonathan Scarlett %F pmlr-v202-liu23bf %I PMLR %P 22559--22593 %U https://proceedings.mlr.press/v202/liu23bf.html %V 202 %X We study contextual combinatorial bandits with probabilistically triggered arms (C$^2$MAB-T) under a variety of smoothness conditions that capture a wide range of applications, such as contextual cascading bandits and contextual influence maximization bandits. Under the triggering probability modulated (TPM) condition, we devise the C$^2$-UCB-T algorithm and propose a novel analysis that achieves an $\tilde{O}(d\sqrt{KT})$ regret bound, removing a potentially exponentially large factor $O(1/p_{\min})$, where $d$ is the dimension of contexts, $p_{\min}$ is the minimum positive probability that any arm can be triggered, and batch-size $K$ is the maximum number of arms that can be triggered per round. Under the variance modulated (VM) or triggering probability and variance modulated (TPVM) conditions, we propose a new variance-adaptive algorithm VAC$^2$-UCB and derive a regret bound $\tilde{O}(d\sqrt{T})$, which is independent of the batch-size $K$. As a valuable by-product, our analysis technique and variance-adaptive algorithm can be applied to the CMAB-T and C$^2$MAB setting, improving existing results there as well. We also include experiments that demonstrate the improved performance of our algorithms compared with benchmark algorithms on synthetic and real-world datasets.
APA
Liu, X., Zuo, J., Wang, S., Lui, J.C., Hajiesmaili, M., Wierman, A. & Chen, W.. (2023). Contextual Combinatorial Bandits with Probabilistically Triggered Arms. Proceedings of the 40th International Conference on Machine Learning, in Proceedings of Machine Learning Research 202:22559-22593 Available from https://proceedings.mlr.press/v202/liu23bf.html.

Related Material