Opponent-Limited Online Search for Imperfect Information Games

Weiming Liu, Haobo Fu, Qiang Fu, Yang Wei
Proceedings of the 40th International Conference on Machine Learning, PMLR 202:21567-21585, 2023.

Abstract

In recent years, online search has been playing an increasingly important role in imperfect information games (IIGs). Previous online search is known as common-knowledge subgame solving, which has to consider all the states in a common-knowledge closure. This is only computationally tolerable for medium size games, such as poker. To handle larger games, order-1 Knowledge-Limited Subgame Solving (1-KLSS) only considers the states in a knowledge-limited closure, which results in a much smaller subgame. However, 1-KLSS is unsafe. In this paper, we first extend 1-KLSS to Safe-1-KLSS and prove its safeness. To make Safe-1-KLSS applicable to even larger games, we propose Opponent-Limited Subgame Solving (OLSS) to limit how the opponent reaches a subgame and how it acts in the subgame. Limiting the opponent’s strategy dramatically reduces the subgame size and improves the efficiency of subgame solving while still preserving some safety in the limit. Experiments in medium size poker show that Safe-1-KLSS and OLSS are orders of magnitude faster than previous common-knowledge subgame solving. Also, OLSS significantly improves the online performance in a two-player Mahjong game, whose game size prohibits the use of previous common-knowledge subgame-solving methods.

Cite this Paper


BibTeX
@InProceedings{pmlr-v202-liu23k, title = {Opponent-Limited Online Search for Imperfect Information Games}, author = {Liu, Weiming and Fu, Haobo and Fu, Qiang and Wei, Yang}, booktitle = {Proceedings of the 40th International Conference on Machine Learning}, pages = {21567--21585}, year = {2023}, editor = {Krause, Andreas and Brunskill, Emma and Cho, Kyunghyun and Engelhardt, Barbara and Sabato, Sivan and Scarlett, Jonathan}, volume = {202}, series = {Proceedings of Machine Learning Research}, month = {23--29 Jul}, publisher = {PMLR}, pdf = {https://proceedings.mlr.press/v202/liu23k/liu23k.pdf}, url = {https://proceedings.mlr.press/v202/liu23k.html}, abstract = {In recent years, online search has been playing an increasingly important role in imperfect information games (IIGs). Previous online search is known as common-knowledge subgame solving, which has to consider all the states in a common-knowledge closure. This is only computationally tolerable for medium size games, such as poker. To handle larger games, order-1 Knowledge-Limited Subgame Solving (1-KLSS) only considers the states in a knowledge-limited closure, which results in a much smaller subgame. However, 1-KLSS is unsafe. In this paper, we first extend 1-KLSS to Safe-1-KLSS and prove its safeness. To make Safe-1-KLSS applicable to even larger games, we propose Opponent-Limited Subgame Solving (OLSS) to limit how the opponent reaches a subgame and how it acts in the subgame. Limiting the opponent’s strategy dramatically reduces the subgame size and improves the efficiency of subgame solving while still preserving some safety in the limit. Experiments in medium size poker show that Safe-1-KLSS and OLSS are orders of magnitude faster than previous common-knowledge subgame solving. Also, OLSS significantly improves the online performance in a two-player Mahjong game, whose game size prohibits the use of previous common-knowledge subgame-solving methods.} }
Endnote
%0 Conference Paper %T Opponent-Limited Online Search for Imperfect Information Games %A Weiming Liu %A Haobo Fu %A Qiang Fu %A Yang Wei %B Proceedings of the 40th International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2023 %E Andreas Krause %E Emma Brunskill %E Kyunghyun Cho %E Barbara Engelhardt %E Sivan Sabato %E Jonathan Scarlett %F pmlr-v202-liu23k %I PMLR %P 21567--21585 %U https://proceedings.mlr.press/v202/liu23k.html %V 202 %X In recent years, online search has been playing an increasingly important role in imperfect information games (IIGs). Previous online search is known as common-knowledge subgame solving, which has to consider all the states in a common-knowledge closure. This is only computationally tolerable for medium size games, such as poker. To handle larger games, order-1 Knowledge-Limited Subgame Solving (1-KLSS) only considers the states in a knowledge-limited closure, which results in a much smaller subgame. However, 1-KLSS is unsafe. In this paper, we first extend 1-KLSS to Safe-1-KLSS and prove its safeness. To make Safe-1-KLSS applicable to even larger games, we propose Opponent-Limited Subgame Solving (OLSS) to limit how the opponent reaches a subgame and how it acts in the subgame. Limiting the opponent’s strategy dramatically reduces the subgame size and improves the efficiency of subgame solving while still preserving some safety in the limit. Experiments in medium size poker show that Safe-1-KLSS and OLSS are orders of magnitude faster than previous common-knowledge subgame solving. Also, OLSS significantly improves the online performance in a two-player Mahjong game, whose game size prohibits the use of previous common-knowledge subgame-solving methods.
APA
Liu, W., Fu, H., Fu, Q. & Wei, Y.. (2023). Opponent-Limited Online Search for Imperfect Information Games. Proceedings of the 40th International Conference on Machine Learning, in Proceedings of Machine Learning Research 202:21567-21585 Available from https://proceedings.mlr.press/v202/liu23k.html.

Related Material