Sequential Multi-Dimensional Self-Supervised Learning for Clinical Time Series

Aniruddh Raghu, Payal Chandak, Ridwan Alam, John Guttag, Collin Stultz
Proceedings of the 40th International Conference on Machine Learning, PMLR 202:28531-28548, 2023.

Abstract

Self-supervised learning (SSL) for clinical time series data has received significant attention in recent literature, since these data are highly rich and provide important information about a patient’s physiological state. However, most existing SSL methods for clinical time series are limited in that they are designed for unimodal time series, such as a sequence of structured features (e.g., lab values and vitals signs) or an individual high-dimensional physiological signal (e.g., an electrocardiogram). These existing methods cannot be readily extended to model time series that exhibit multimodality, with structured features and high-dimensional data being recorded at each timestep in the sequence. In this work, we address this gap and propose a new SSL method — Sequential Multi-Dimensional SSL — where a SSL loss is applied both at the level of the entire sequence and at the level of the individual high-dimensional data points in the sequence in order to better capture information at both scales. Our strategy is agnostic to the specific form of loss function used at each level – it can be contrastive, as in SimCLR, or non-contrastive, as in VICReg. We evaluate our method on two real-world clinical datasets, where the time series contains sequences of (1) high-frequency electrocardiograms and (2) structured data from lab values and vitals signs. Our experimental results indicate that pre-training with our method and then fine-tuning on downstream tasks improves performance over baselines on both datasets, and in several settings, can lead to improvements across different self-supervised loss functions.

Cite this Paper


BibTeX
@InProceedings{pmlr-v202-raghu23a, title = {Sequential Multi-Dimensional Self-Supervised Learning for Clinical Time Series}, author = {Raghu, Aniruddh and Chandak, Payal and Alam, Ridwan and Guttag, John and Stultz, Collin}, booktitle = {Proceedings of the 40th International Conference on Machine Learning}, pages = {28531--28548}, year = {2023}, editor = {Krause, Andreas and Brunskill, Emma and Cho, Kyunghyun and Engelhardt, Barbara and Sabato, Sivan and Scarlett, Jonathan}, volume = {202}, series = {Proceedings of Machine Learning Research}, month = {23--29 Jul}, publisher = {PMLR}, pdf = {https://proceedings.mlr.press/v202/raghu23a/raghu23a.pdf}, url = {https://proceedings.mlr.press/v202/raghu23a.html}, abstract = {Self-supervised learning (SSL) for clinical time series data has received significant attention in recent literature, since these data are highly rich and provide important information about a patient’s physiological state. However, most existing SSL methods for clinical time series are limited in that they are designed for unimodal time series, such as a sequence of structured features (e.g., lab values and vitals signs) or an individual high-dimensional physiological signal (e.g., an electrocardiogram). These existing methods cannot be readily extended to model time series that exhibit multimodality, with structured features and high-dimensional data being recorded at each timestep in the sequence. In this work, we address this gap and propose a new SSL method — Sequential Multi-Dimensional SSL — where a SSL loss is applied both at the level of the entire sequence and at the level of the individual high-dimensional data points in the sequence in order to better capture information at both scales. Our strategy is agnostic to the specific form of loss function used at each level – it can be contrastive, as in SimCLR, or non-contrastive, as in VICReg. We evaluate our method on two real-world clinical datasets, where the time series contains sequences of (1) high-frequency electrocardiograms and (2) structured data from lab values and vitals signs. Our experimental results indicate that pre-training with our method and then fine-tuning on downstream tasks improves performance over baselines on both datasets, and in several settings, can lead to improvements across different self-supervised loss functions.} }
Endnote
%0 Conference Paper %T Sequential Multi-Dimensional Self-Supervised Learning for Clinical Time Series %A Aniruddh Raghu %A Payal Chandak %A Ridwan Alam %A John Guttag %A Collin Stultz %B Proceedings of the 40th International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2023 %E Andreas Krause %E Emma Brunskill %E Kyunghyun Cho %E Barbara Engelhardt %E Sivan Sabato %E Jonathan Scarlett %F pmlr-v202-raghu23a %I PMLR %P 28531--28548 %U https://proceedings.mlr.press/v202/raghu23a.html %V 202 %X Self-supervised learning (SSL) for clinical time series data has received significant attention in recent literature, since these data are highly rich and provide important information about a patient’s physiological state. However, most existing SSL methods for clinical time series are limited in that they are designed for unimodal time series, such as a sequence of structured features (e.g., lab values and vitals signs) or an individual high-dimensional physiological signal (e.g., an electrocardiogram). These existing methods cannot be readily extended to model time series that exhibit multimodality, with structured features and high-dimensional data being recorded at each timestep in the sequence. In this work, we address this gap and propose a new SSL method — Sequential Multi-Dimensional SSL — where a SSL loss is applied both at the level of the entire sequence and at the level of the individual high-dimensional data points in the sequence in order to better capture information at both scales. Our strategy is agnostic to the specific form of loss function used at each level – it can be contrastive, as in SimCLR, or non-contrastive, as in VICReg. We evaluate our method on two real-world clinical datasets, where the time series contains sequences of (1) high-frequency electrocardiograms and (2) structured data from lab values and vitals signs. Our experimental results indicate that pre-training with our method and then fine-tuning on downstream tasks improves performance over baselines on both datasets, and in several settings, can lead to improvements across different self-supervised loss functions.
APA
Raghu, A., Chandak, P., Alam, R., Guttag, J. & Stultz, C.. (2023). Sequential Multi-Dimensional Self-Supervised Learning for Clinical Time Series. Proceedings of the 40th International Conference on Machine Learning, in Proceedings of Machine Learning Research 202:28531-28548 Available from https://proceedings.mlr.press/v202/raghu23a.html.

Related Material