Regularization-free Diffeomorphic Temporal Alignment Nets

Ron Shapira Weber, Oren Freifeld
Proceedings of the 40th International Conference on Machine Learning, PMLR 202:30794-30826, 2023.

Abstract

In time-series analysis, nonlinear temporal misalignment is a major problem that forestalls even simple averaging. An effective learning-based solution for this problem is the Diffeomorphic Temporal Alignment Net (DTAN), that, by relying on a diffeomorphic temporal transformer net and the amortization of the joint-alignment task, eliminates drawbacks of traditional alignment methods. Unfortunately, existing DTAN formulations crucially depend on a regularization term whose optimal hyperparameters are dataset-specific and usually searched via a large number of experiments. Here we propose a regularization-free DTAN that obviates the need to perform such an expensive, and often impractical, search. Concretely, we propose a new well-behaved loss that we call the Inverse Consistency Averaging Error (ICAE), as well as a related new triplet loss. Extensive experiments on 128 UCR datasets show that the proposed method outperforms contemporary methods despite not using a regularization. Moreover, ICAE also gives rise to the first DTAN that supports variable-length signals. Our code is available at https://github.com/BGU-CS-VIL/RF-DTAN.

Cite this Paper


BibTeX
@InProceedings{pmlr-v202-shapira-weber23a, title = {Regularization-free Diffeomorphic Temporal Alignment Nets}, author = {Shapira Weber, Ron and Freifeld, Oren}, booktitle = {Proceedings of the 40th International Conference on Machine Learning}, pages = {30794--30826}, year = {2023}, editor = {Krause, Andreas and Brunskill, Emma and Cho, Kyunghyun and Engelhardt, Barbara and Sabato, Sivan and Scarlett, Jonathan}, volume = {202}, series = {Proceedings of Machine Learning Research}, month = {23--29 Jul}, publisher = {PMLR}, pdf = {https://proceedings.mlr.press/v202/shapira-weber23a/shapira-weber23a.pdf}, url = {https://proceedings.mlr.press/v202/shapira-weber23a.html}, abstract = {In time-series analysis, nonlinear temporal misalignment is a major problem that forestalls even simple averaging. An effective learning-based solution for this problem is the Diffeomorphic Temporal Alignment Net (DTAN), that, by relying on a diffeomorphic temporal transformer net and the amortization of the joint-alignment task, eliminates drawbacks of traditional alignment methods. Unfortunately, existing DTAN formulations crucially depend on a regularization term whose optimal hyperparameters are dataset-specific and usually searched via a large number of experiments. Here we propose a regularization-free DTAN that obviates the need to perform such an expensive, and often impractical, search. Concretely, we propose a new well-behaved loss that we call the Inverse Consistency Averaging Error (ICAE), as well as a related new triplet loss. Extensive experiments on 128 UCR datasets show that the proposed method outperforms contemporary methods despite not using a regularization. Moreover, ICAE also gives rise to the first DTAN that supports variable-length signals. Our code is available at https://github.com/BGU-CS-VIL/RF-DTAN.} }
Endnote
%0 Conference Paper %T Regularization-free Diffeomorphic Temporal Alignment Nets %A Ron Shapira Weber %A Oren Freifeld %B Proceedings of the 40th International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2023 %E Andreas Krause %E Emma Brunskill %E Kyunghyun Cho %E Barbara Engelhardt %E Sivan Sabato %E Jonathan Scarlett %F pmlr-v202-shapira-weber23a %I PMLR %P 30794--30826 %U https://proceedings.mlr.press/v202/shapira-weber23a.html %V 202 %X In time-series analysis, nonlinear temporal misalignment is a major problem that forestalls even simple averaging. An effective learning-based solution for this problem is the Diffeomorphic Temporal Alignment Net (DTAN), that, by relying on a diffeomorphic temporal transformer net and the amortization of the joint-alignment task, eliminates drawbacks of traditional alignment methods. Unfortunately, existing DTAN formulations crucially depend on a regularization term whose optimal hyperparameters are dataset-specific and usually searched via a large number of experiments. Here we propose a regularization-free DTAN that obviates the need to perform such an expensive, and often impractical, search. Concretely, we propose a new well-behaved loss that we call the Inverse Consistency Averaging Error (ICAE), as well as a related new triplet loss. Extensive experiments on 128 UCR datasets show that the proposed method outperforms contemporary methods despite not using a regularization. Moreover, ICAE also gives rise to the first DTAN that supports variable-length signals. Our code is available at https://github.com/BGU-CS-VIL/RF-DTAN.
APA
Shapira Weber, R. & Freifeld, O.. (2023). Regularization-free Diffeomorphic Temporal Alignment Nets. Proceedings of the 40th International Conference on Machine Learning, in Proceedings of Machine Learning Research 202:30794-30826 Available from https://proceedings.mlr.press/v202/shapira-weber23a.html.

Related Material