Sketching for First Order Method: Efficient Algorithm for Low-Bandwidth Channel and Vulnerability

Zhao Song, Yitan Wang, Zheng Yu, Lichen Zhang
Proceedings of the 40th International Conference on Machine Learning, PMLR 202:32365-32417, 2023.

Abstract

Sketching is one of the most fundamental tools in large-scale machine learning. It enables runtime and memory saving via randomly compressing the original large problem into lower dimensions. In this paper, we propose a novel sketching scheme for the first order method in large-scale distributed learning setting, such that the communication costs between distributed agents are saved while the convergence of the algorithms is still guaranteed. Given gradient information in a high dimension $d$, the agent passes the compressed information processed by a sketching matrix $R\in \mathbb{R}^{s\times d}$ with $s\ll d$, and the receiver de-compressed via the de-sketching matrix $R^\top$ to “recover” the information in original dimension. Using such a framework, we develop algorithms for federated learning with lower communication costs. However, such random sketching does not protect the privacy of local data directly. We show that the gradient leakage problem still exists after applying the sketching technique by presenting a specific gradient attack method. As a remedy, we prove rigorously that the algorithm will be differentially private by adding additional random noises in gradient information, which results in a both communication-efficient and differentially private first order approach for federated learning tasks. Our sketching scheme can be further generalized to other learning settings and might be of independent interest itself.

Cite this Paper


BibTeX
@InProceedings{pmlr-v202-song23h, title = {Sketching for First Order Method: Efficient Algorithm for Low-Bandwidth Channel and Vulnerability}, author = {Song, Zhao and Wang, Yitan and Yu, Zheng and Zhang, Lichen}, booktitle = {Proceedings of the 40th International Conference on Machine Learning}, pages = {32365--32417}, year = {2023}, editor = {Krause, Andreas and Brunskill, Emma and Cho, Kyunghyun and Engelhardt, Barbara and Sabato, Sivan and Scarlett, Jonathan}, volume = {202}, series = {Proceedings of Machine Learning Research}, month = {23--29 Jul}, publisher = {PMLR}, pdf = {https://proceedings.mlr.press/v202/song23h/song23h.pdf}, url = {https://proceedings.mlr.press/v202/song23h.html}, abstract = {Sketching is one of the most fundamental tools in large-scale machine learning. It enables runtime and memory saving via randomly compressing the original large problem into lower dimensions. In this paper, we propose a novel sketching scheme for the first order method in large-scale distributed learning setting, such that the communication costs between distributed agents are saved while the convergence of the algorithms is still guaranteed. Given gradient information in a high dimension $d$, the agent passes the compressed information processed by a sketching matrix $R\in \mathbb{R}^{s\times d}$ with $s\ll d$, and the receiver de-compressed via the de-sketching matrix $R^\top$ to “recover” the information in original dimension. Using such a framework, we develop algorithms for federated learning with lower communication costs. However, such random sketching does not protect the privacy of local data directly. We show that the gradient leakage problem still exists after applying the sketching technique by presenting a specific gradient attack method. As a remedy, we prove rigorously that the algorithm will be differentially private by adding additional random noises in gradient information, which results in a both communication-efficient and differentially private first order approach for federated learning tasks. Our sketching scheme can be further generalized to other learning settings and might be of independent interest itself.} }
Endnote
%0 Conference Paper %T Sketching for First Order Method: Efficient Algorithm for Low-Bandwidth Channel and Vulnerability %A Zhao Song %A Yitan Wang %A Zheng Yu %A Lichen Zhang %B Proceedings of the 40th International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2023 %E Andreas Krause %E Emma Brunskill %E Kyunghyun Cho %E Barbara Engelhardt %E Sivan Sabato %E Jonathan Scarlett %F pmlr-v202-song23h %I PMLR %P 32365--32417 %U https://proceedings.mlr.press/v202/song23h.html %V 202 %X Sketching is one of the most fundamental tools in large-scale machine learning. It enables runtime and memory saving via randomly compressing the original large problem into lower dimensions. In this paper, we propose a novel sketching scheme for the first order method in large-scale distributed learning setting, such that the communication costs between distributed agents are saved while the convergence of the algorithms is still guaranteed. Given gradient information in a high dimension $d$, the agent passes the compressed information processed by a sketching matrix $R\in \mathbb{R}^{s\times d}$ with $s\ll d$, and the receiver de-compressed via the de-sketching matrix $R^\top$ to “recover” the information in original dimension. Using such a framework, we develop algorithms for federated learning with lower communication costs. However, such random sketching does not protect the privacy of local data directly. We show that the gradient leakage problem still exists after applying the sketching technique by presenting a specific gradient attack method. As a remedy, we prove rigorously that the algorithm will be differentially private by adding additional random noises in gradient information, which results in a both communication-efficient and differentially private first order approach for federated learning tasks. Our sketching scheme can be further generalized to other learning settings and might be of independent interest itself.
APA
Song, Z., Wang, Y., Yu, Z. & Zhang, L.. (2023). Sketching for First Order Method: Efficient Algorithm for Low-Bandwidth Channel and Vulnerability. Proceedings of the 40th International Conference on Machine Learning, in Proceedings of Machine Learning Research 202:32365-32417 Available from https://proceedings.mlr.press/v202/song23h.html.

Related Material