[edit]
Submodular Order Functions and Assortment Optimization
Proceedings of the 40th International Conference on Machine Learning, PMLR 202:34584-34614, 2023.
Abstract
We define a new class of set functions that in addition to being monotone and subadditive, also admit a very limited form of submodularity defined over a permutation of the ground set. We refer to this permutation as a submodular order. We give fast algorithms with strong approximation guarantees for maximizing submodular order functions under a variety of constraints. Applying this new notion to the problem of constrained assortment optimization in fundamental choice models, we obtain new algorithms that are both faster and have stronger approximation guarantees (in some cases, first algorithm with constant factor guarantee). We also show an intriguing connection to the maximization of monotone submodular functions in the streaming model, where we recover best known approximation guarantees as a corollary of our results.