When Sparsity Meets Contrastive Models: Less Graph Data Can Bring Better Class-Balanced Representations

Chunhui Zhang, Chao Huang, Yijun Tian, Qianlong Wen, Zhongyu Ouyang, Youhuan Li, Yanfang Ye, Chuxu Zhang
Proceedings of the 40th International Conference on Machine Learning, PMLR 202:41133-41150, 2023.

Abstract

Graph Neural Networks (GNNs) are powerful models for non-Euclidean data, but their training is often accentuated by massive unnecessary computation: on the one hand, training on non-Euclidean data has relatively high computational cost due to its irregular density properties; on the other hand, the class imbalance property often associated with non-Euclidean data cannot be alleviated by the massiveness of the data, thus hindering the generalisation of the models. To address the above issues, theoretically, we start with a hypothesis about the effectiveness of using a subset of training data for GNNs, which is guaranteed by the gradient distance between the subset and the full set. Empirically, we also observe that a subset of the data can provide informative gradients for model optimization and which changes over time dynamically. We name this phenomenon dynamic data sparsity. Additionally, we find that pruned sparse contrastive models may miss valuable information, leading to a large loss value on the informative subset. Motivated by the above findings, we develop a unified data model dynamic sparsity framework called Data Decantation (DataDec) to address the above challenges. The key idea of DataDec is to identify the informative subset dynamically during the training process by applying sparse graph contrastive learning. The effectiveness of DataDec is comprehensively evaluated on graph benchmark datasets and we also verify its generalizability on image data.

Cite this Paper


BibTeX
@InProceedings{pmlr-v202-zhang23o, title = {When Sparsity Meets Contrastive Models: Less Graph Data Can Bring Better Class-Balanced Representations}, author = {Zhang, Chunhui and Huang, Chao and Tian, Yijun and Wen, Qianlong and Ouyang, Zhongyu and Li, Youhuan and Ye, Yanfang and Zhang, Chuxu}, booktitle = {Proceedings of the 40th International Conference on Machine Learning}, pages = {41133--41150}, year = {2023}, editor = {Krause, Andreas and Brunskill, Emma and Cho, Kyunghyun and Engelhardt, Barbara and Sabato, Sivan and Scarlett, Jonathan}, volume = {202}, series = {Proceedings of Machine Learning Research}, month = {23--29 Jul}, publisher = {PMLR}, pdf = {https://proceedings.mlr.press/v202/zhang23o/zhang23o.pdf}, url = {https://proceedings.mlr.press/v202/zhang23o.html}, abstract = {Graph Neural Networks (GNNs) are powerful models for non-Euclidean data, but their training is often accentuated by massive unnecessary computation: on the one hand, training on non-Euclidean data has relatively high computational cost due to its irregular density properties; on the other hand, the class imbalance property often associated with non-Euclidean data cannot be alleviated by the massiveness of the data, thus hindering the generalisation of the models. To address the above issues, theoretically, we start with a hypothesis about the effectiveness of using a subset of training data for GNNs, which is guaranteed by the gradient distance between the subset and the full set. Empirically, we also observe that a subset of the data can provide informative gradients for model optimization and which changes over time dynamically. We name this phenomenon dynamic data sparsity. Additionally, we find that pruned sparse contrastive models may miss valuable information, leading to a large loss value on the informative subset. Motivated by the above findings, we develop a unified data model dynamic sparsity framework called Data Decantation (DataDec) to address the above challenges. The key idea of DataDec is to identify the informative subset dynamically during the training process by applying sparse graph contrastive learning. The effectiveness of DataDec is comprehensively evaluated on graph benchmark datasets and we also verify its generalizability on image data.} }
Endnote
%0 Conference Paper %T When Sparsity Meets Contrastive Models: Less Graph Data Can Bring Better Class-Balanced Representations %A Chunhui Zhang %A Chao Huang %A Yijun Tian %A Qianlong Wen %A Zhongyu Ouyang %A Youhuan Li %A Yanfang Ye %A Chuxu Zhang %B Proceedings of the 40th International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2023 %E Andreas Krause %E Emma Brunskill %E Kyunghyun Cho %E Barbara Engelhardt %E Sivan Sabato %E Jonathan Scarlett %F pmlr-v202-zhang23o %I PMLR %P 41133--41150 %U https://proceedings.mlr.press/v202/zhang23o.html %V 202 %X Graph Neural Networks (GNNs) are powerful models for non-Euclidean data, but their training is often accentuated by massive unnecessary computation: on the one hand, training on non-Euclidean data has relatively high computational cost due to its irregular density properties; on the other hand, the class imbalance property often associated with non-Euclidean data cannot be alleviated by the massiveness of the data, thus hindering the generalisation of the models. To address the above issues, theoretically, we start with a hypothesis about the effectiveness of using a subset of training data for GNNs, which is guaranteed by the gradient distance between the subset and the full set. Empirically, we also observe that a subset of the data can provide informative gradients for model optimization and which changes over time dynamically. We name this phenomenon dynamic data sparsity. Additionally, we find that pruned sparse contrastive models may miss valuable information, leading to a large loss value on the informative subset. Motivated by the above findings, we develop a unified data model dynamic sparsity framework called Data Decantation (DataDec) to address the above challenges. The key idea of DataDec is to identify the informative subset dynamically during the training process by applying sparse graph contrastive learning. The effectiveness of DataDec is comprehensively evaluated on graph benchmark datasets and we also verify its generalizability on image data.
APA
Zhang, C., Huang, C., Tian, Y., Wen, Q., Ouyang, Z., Li, Y., Ye, Y. & Zhang, C.. (2023). When Sparsity Meets Contrastive Models: Less Graph Data Can Bring Better Class-Balanced Representations. Proceedings of the 40th International Conference on Machine Learning, in Proceedings of Machine Learning Research 202:41133-41150 Available from https://proceedings.mlr.press/v202/zhang23o.html.

Related Material