Improving Medical Predictions by Irregular Multimodal Electronic Health Records Modeling

Xinlu Zhang, Shiyang Li, Zhiyu Chen, Xifeng Yan, Linda Ruth Petzold
Proceedings of the 40th International Conference on Machine Learning, PMLR 202:41300-41313, 2023.

Abstract

Health conditions among patients in intensive care units (ICUs) are monitored via electronic health records (EHRs), composed of numerical time series and lengthy clinical note sequences, both taken at $\textit{irregular}$ time intervals. Dealing with such irregularity in every modality, and integrating irregularity into multimodal representations to improve medical predictions, is a challenging problem. Our method first addresses irregularity in each single modality by (1) modeling irregular time series by dynamically incorporating hand-crafted imputation embeddings into learned interpolation embeddings via a gating mechanism, and (2) casting a series of clinical note representations as multivariate irregular time series and tackling irregularity via a time attention mechanism. We further integrate irregularity in multimodal fusion with an interleaved attention mechanism across temporal steps. To the best of our knowledge, this is the first work to thoroughly model irregularity in multimodalities for improving medical predictions. Our proposed methods for two medical prediction tasks consistently outperforms state-of-the-art (SOTA) baselines in each single modality and multimodal fusion scenarios. Specifically, we observe relative improvements of 6.5%, 3.6%, and 4.3% in F1 for time series, clinical notes, and multimodal fusion, respectively. These results demonstrate the effectiveness of our methods and the importance of considering irregularity in multimodal EHRs.

Cite this Paper


BibTeX
@InProceedings{pmlr-v202-zhang23v, title = {Improving Medical Predictions by Irregular Multimodal Electronic Health Records Modeling}, author = {Zhang, Xinlu and Li, Shiyang and Chen, Zhiyu and Yan, Xifeng and Petzold, Linda Ruth}, booktitle = {Proceedings of the 40th International Conference on Machine Learning}, pages = {41300--41313}, year = {2023}, editor = {Krause, Andreas and Brunskill, Emma and Cho, Kyunghyun and Engelhardt, Barbara and Sabato, Sivan and Scarlett, Jonathan}, volume = {202}, series = {Proceedings of Machine Learning Research}, month = {23--29 Jul}, publisher = {PMLR}, pdf = {https://proceedings.mlr.press/v202/zhang23v/zhang23v.pdf}, url = {https://proceedings.mlr.press/v202/zhang23v.html}, abstract = {Health conditions among patients in intensive care units (ICUs) are monitored via electronic health records (EHRs), composed of numerical time series and lengthy clinical note sequences, both taken at $\textit{irregular}$ time intervals. Dealing with such irregularity in every modality, and integrating irregularity into multimodal representations to improve medical predictions, is a challenging problem. Our method first addresses irregularity in each single modality by (1) modeling irregular time series by dynamically incorporating hand-crafted imputation embeddings into learned interpolation embeddings via a gating mechanism, and (2) casting a series of clinical note representations as multivariate irregular time series and tackling irregularity via a time attention mechanism. We further integrate irregularity in multimodal fusion with an interleaved attention mechanism across temporal steps. To the best of our knowledge, this is the first work to thoroughly model irregularity in multimodalities for improving medical predictions. Our proposed methods for two medical prediction tasks consistently outperforms state-of-the-art (SOTA) baselines in each single modality and multimodal fusion scenarios. Specifically, we observe relative improvements of 6.5%, 3.6%, and 4.3% in F1 for time series, clinical notes, and multimodal fusion, respectively. These results demonstrate the effectiveness of our methods and the importance of considering irregularity in multimodal EHRs.} }
Endnote
%0 Conference Paper %T Improving Medical Predictions by Irregular Multimodal Electronic Health Records Modeling %A Xinlu Zhang %A Shiyang Li %A Zhiyu Chen %A Xifeng Yan %A Linda Ruth Petzold %B Proceedings of the 40th International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2023 %E Andreas Krause %E Emma Brunskill %E Kyunghyun Cho %E Barbara Engelhardt %E Sivan Sabato %E Jonathan Scarlett %F pmlr-v202-zhang23v %I PMLR %P 41300--41313 %U https://proceedings.mlr.press/v202/zhang23v.html %V 202 %X Health conditions among patients in intensive care units (ICUs) are monitored via electronic health records (EHRs), composed of numerical time series and lengthy clinical note sequences, both taken at $\textit{irregular}$ time intervals. Dealing with such irregularity in every modality, and integrating irregularity into multimodal representations to improve medical predictions, is a challenging problem. Our method first addresses irregularity in each single modality by (1) modeling irregular time series by dynamically incorporating hand-crafted imputation embeddings into learned interpolation embeddings via a gating mechanism, and (2) casting a series of clinical note representations as multivariate irregular time series and tackling irregularity via a time attention mechanism. We further integrate irregularity in multimodal fusion with an interleaved attention mechanism across temporal steps. To the best of our knowledge, this is the first work to thoroughly model irregularity in multimodalities for improving medical predictions. Our proposed methods for two medical prediction tasks consistently outperforms state-of-the-art (SOTA) baselines in each single modality and multimodal fusion scenarios. Specifically, we observe relative improvements of 6.5%, 3.6%, and 4.3% in F1 for time series, clinical notes, and multimodal fusion, respectively. These results demonstrate the effectiveness of our methods and the importance of considering irregularity in multimodal EHRs.
APA
Zhang, X., Li, S., Chen, Z., Yan, X. & Petzold, L.R.. (2023). Improving Medical Predictions by Irregular Multimodal Electronic Health Records Modeling. Proceedings of the 40th International Conference on Machine Learning, in Proceedings of Machine Learning Research 202:41300-41313 Available from https://proceedings.mlr.press/v202/zhang23v.html.

Related Material