On the Optimality of Misspecified Kernel Ridge Regression

Haobo Zhang, Yicheng Li, Weihao Lu, Qian Lin
Proceedings of the 40th International Conference on Machine Learning, PMLR 202:41331-41353, 2023.

Abstract

In the misspecified kernel ridge regression problem, researchers usually assume the underground true function $f_{\rho}^{\star} \in [\mathcal{H}]^{s}$, a less-smooth interpolation space of a reproducing kernel Hilbert space (RKHS) $\mathcal{H}$ for some $s\in (0,1)$. The existing minimax optimal results require $\left\Vert f_{\rho}^{\star} \right \Vert_{L^{\infty}} < \infty$ which implicitly requires $s > \alpha_{0}$ where $\alpha_{0} \in (0,1) $ is the embedding index, a constant depending on $\mathcal{H}$. Whether the KRR is optimal for all $s\in (0,1)$ is an outstanding problem lasting for years. In this paper, we show that KRR is minimax optimal for any $s\in (0,1)$ when the $\mathcal{H}$ is a Sobolev RKHS.

Cite this Paper


BibTeX
@InProceedings{pmlr-v202-zhang23x, title = {On the Optimality of Misspecified Kernel Ridge Regression}, author = {Zhang, Haobo and Li, Yicheng and Lu, Weihao and Lin, Qian}, booktitle = {Proceedings of the 40th International Conference on Machine Learning}, pages = {41331--41353}, year = {2023}, editor = {Krause, Andreas and Brunskill, Emma and Cho, Kyunghyun and Engelhardt, Barbara and Sabato, Sivan and Scarlett, Jonathan}, volume = {202}, series = {Proceedings of Machine Learning Research}, month = {23--29 Jul}, publisher = {PMLR}, pdf = {https://proceedings.mlr.press/v202/zhang23x/zhang23x.pdf}, url = {https://proceedings.mlr.press/v202/zhang23x.html}, abstract = {In the misspecified kernel ridge regression problem, researchers usually assume the underground true function $f_{\rho}^{\star} \in [\mathcal{H}]^{s}$, a less-smooth interpolation space of a reproducing kernel Hilbert space (RKHS) $\mathcal{H}$ for some $s\in (0,1)$. The existing minimax optimal results require $\left\Vert f_{\rho}^{\star} \right \Vert_{L^{\infty}} < \infty$ which implicitly requires $s > \alpha_{0}$ where $\alpha_{0} \in (0,1) $ is the embedding index, a constant depending on $\mathcal{H}$. Whether the KRR is optimal for all $s\in (0,1)$ is an outstanding problem lasting for years. In this paper, we show that KRR is minimax optimal for any $s\in (0,1)$ when the $\mathcal{H}$ is a Sobolev RKHS.} }
Endnote
%0 Conference Paper %T On the Optimality of Misspecified Kernel Ridge Regression %A Haobo Zhang %A Yicheng Li %A Weihao Lu %A Qian Lin %B Proceedings of the 40th International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2023 %E Andreas Krause %E Emma Brunskill %E Kyunghyun Cho %E Barbara Engelhardt %E Sivan Sabato %E Jonathan Scarlett %F pmlr-v202-zhang23x %I PMLR %P 41331--41353 %U https://proceedings.mlr.press/v202/zhang23x.html %V 202 %X In the misspecified kernel ridge regression problem, researchers usually assume the underground true function $f_{\rho}^{\star} \in [\mathcal{H}]^{s}$, a less-smooth interpolation space of a reproducing kernel Hilbert space (RKHS) $\mathcal{H}$ for some $s\in (0,1)$. The existing minimax optimal results require $\left\Vert f_{\rho}^{\star} \right \Vert_{L^{\infty}} < \infty$ which implicitly requires $s > \alpha_{0}$ where $\alpha_{0} \in (0,1) $ is the embedding index, a constant depending on $\mathcal{H}$. Whether the KRR is optimal for all $s\in (0,1)$ is an outstanding problem lasting for years. In this paper, we show that KRR is minimax optimal for any $s\in (0,1)$ when the $\mathcal{H}$ is a Sobolev RKHS.
APA
Zhang, H., Li, Y., Lu, W. & Lin, Q.. (2023). On the Optimality of Misspecified Kernel Ridge Regression. Proceedings of the 40th International Conference on Machine Learning, in Proceedings of Machine Learning Research 202:41331-41353 Available from https://proceedings.mlr.press/v202/zhang23x.html.

Related Material