Label Distributionally Robust Losses for Multi-class Classification: Consistency, Robustness and Adaptivity

Dixian Zhu, Yiming Ying, Tianbao Yang
Proceedings of the 40th International Conference on Machine Learning, PMLR 202:43289-43325, 2023.

Abstract

We study a family of loss functions named label-distributionally robust (LDR) losses for multi-class classification that are formulated from distributionally robust optimization (DRO) perspective, where the uncertainty in the given label information are modeled and captured by taking the worse case of distributional weights. The benefits of this perspective are several fold: (i) it provides a unified framework to explain the classical cross-entropy (CE) loss and SVM loss and their variants, (ii) it includes a special family corresponding to the temperature-scaled CE loss, which is widely adopted but poorly understood; (iii) it allows us to achieve adaptivity to the uncertainty degree of label information at an instance level. Our contributions include: (1) we study both consistency and robustness by establishing top-$k$ ($\forall k\geq 1$) consistency of LDR losses for multi-class classification, and a negative result that a top-$1$ consistent and symmetric robust loss cannot achieve top-$k$ consistency simultaneously for all $k\geq 2$; (2) we propose a new adaptive LDR loss that automatically adapts the individualized temperature parameter to the noise degree of class label of each instance; (3) we demonstrate stable and competitive performance for the proposed adaptive LDR loss on 7 benchmark datasets under 6 noisy label and 1 clean settings against 13 loss functions, and on one real-world noisy dataset. The method is open-sourced at https://github.com/Optimization-AI/ICML2023_LDR.

Cite this Paper


BibTeX
@InProceedings{pmlr-v202-zhu23o, title = {Label Distributionally Robust Losses for Multi-class Classification: Consistency, Robustness and Adaptivity}, author = {Zhu, Dixian and Ying, Yiming and Yang, Tianbao}, booktitle = {Proceedings of the 40th International Conference on Machine Learning}, pages = {43289--43325}, year = {2023}, editor = {Krause, Andreas and Brunskill, Emma and Cho, Kyunghyun and Engelhardt, Barbara and Sabato, Sivan and Scarlett, Jonathan}, volume = {202}, series = {Proceedings of Machine Learning Research}, month = {23--29 Jul}, publisher = {PMLR}, pdf = {https://proceedings.mlr.press/v202/zhu23o/zhu23o.pdf}, url = {https://proceedings.mlr.press/v202/zhu23o.html}, abstract = {We study a family of loss functions named label-distributionally robust (LDR) losses for multi-class classification that are formulated from distributionally robust optimization (DRO) perspective, where the uncertainty in the given label information are modeled and captured by taking the worse case of distributional weights. The benefits of this perspective are several fold: (i) it provides a unified framework to explain the classical cross-entropy (CE) loss and SVM loss and their variants, (ii) it includes a special family corresponding to the temperature-scaled CE loss, which is widely adopted but poorly understood; (iii) it allows us to achieve adaptivity to the uncertainty degree of label information at an instance level. Our contributions include: (1) we study both consistency and robustness by establishing top-$k$ ($\forall k\geq 1$) consistency of LDR losses for multi-class classification, and a negative result that a top-$1$ consistent and symmetric robust loss cannot achieve top-$k$ consistency simultaneously for all $k\geq 2$; (2) we propose a new adaptive LDR loss that automatically adapts the individualized temperature parameter to the noise degree of class label of each instance; (3) we demonstrate stable and competitive performance for the proposed adaptive LDR loss on 7 benchmark datasets under 6 noisy label and 1 clean settings against 13 loss functions, and on one real-world noisy dataset. The method is open-sourced at https://github.com/Optimization-AI/ICML2023_LDR.} }
Endnote
%0 Conference Paper %T Label Distributionally Robust Losses for Multi-class Classification: Consistency, Robustness and Adaptivity %A Dixian Zhu %A Yiming Ying %A Tianbao Yang %B Proceedings of the 40th International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2023 %E Andreas Krause %E Emma Brunskill %E Kyunghyun Cho %E Barbara Engelhardt %E Sivan Sabato %E Jonathan Scarlett %F pmlr-v202-zhu23o %I PMLR %P 43289--43325 %U https://proceedings.mlr.press/v202/zhu23o.html %V 202 %X We study a family of loss functions named label-distributionally robust (LDR) losses for multi-class classification that are formulated from distributionally robust optimization (DRO) perspective, where the uncertainty in the given label information are modeled and captured by taking the worse case of distributional weights. The benefits of this perspective are several fold: (i) it provides a unified framework to explain the classical cross-entropy (CE) loss and SVM loss and their variants, (ii) it includes a special family corresponding to the temperature-scaled CE loss, which is widely adopted but poorly understood; (iii) it allows us to achieve adaptivity to the uncertainty degree of label information at an instance level. Our contributions include: (1) we study both consistency and robustness by establishing top-$k$ ($\forall k\geq 1$) consistency of LDR losses for multi-class classification, and a negative result that a top-$1$ consistent and symmetric robust loss cannot achieve top-$k$ consistency simultaneously for all $k\geq 2$; (2) we propose a new adaptive LDR loss that automatically adapts the individualized temperature parameter to the noise degree of class label of each instance; (3) we demonstrate stable and competitive performance for the proposed adaptive LDR loss on 7 benchmark datasets under 6 noisy label and 1 clean settings against 13 loss functions, and on one real-world noisy dataset. The method is open-sourced at https://github.com/Optimization-AI/ICML2023_LDR.
APA
Zhu, D., Ying, Y. & Yang, T.. (2023). Label Distributionally Robust Losses for Multi-class Classification: Consistency, Robustness and Adaptivity. Proceedings of the 40th International Conference on Machine Learning, in Proceedings of Machine Learning Research 202:43289-43325 Available from https://proceedings.mlr.press/v202/zhu23o.html.

Related Material