Evaluation of conformal-based probabilistic forecasting methods for short-term wind speed forecasting

Simon Althoff, Johan Hallberg Szabadv’ary, Jonathan Anderson, Lars Carlsson
Proceedings of the Twelfth Symposium on Conformal and Probabilistic Prediction with Applications, PMLR 204:100-115, 2023.

Abstract

We apply Conformal Predictive Distribution Systems (CPDS) and a non-exchangeable version of the traditional Conformal Prediction (NECP) method to short-term wind speed forecasting to generate probabilistic forecasts. These are compared to the more traditional Quantile Regression Forest (QRF) method. A short-term forecast is available from a few hours before the forecasted time period and is only extended a couple days into the future. The methods are supplied ensemble forecasts as input and additionally the Conformal methods are supplied with post-processed point forecasts for generating the probability distributions. In the NECP case we propose a method of producing probability distributions by creating sequentially larger prediction intervals. The methods are compared through a teaching schedule, to mimic a real-world setting. For each model update in the teaching schedule a grid-search approach is applied to select each method’s optimal hyperparameters, respectively. The methods are tested out of the box with tweaks to few hyperparameters. We also introduce a normalized nonconformity score and use it with the conformal method that handles data that violates the exchangeability assumption. The resulting probability distributions are compared to actual wind measurements through Continuous Ranked Probability Scores (CRPS) as well as their validity and efficiency of certain prediction intervals. Our results suggest that the conformal based methods, with the pre-trained underlying model, produce slightly more conservative but more efficient probability distributions than QRF at a lower computational cost. We further propose how the conformal-based methods could be improved for the application to real-world scenarios.

Cite this Paper


BibTeX
@InProceedings{pmlr-v204-althoff23a, title = {Evaluation of conformal-based probabilistic forecasting methods for short-term wind speed forecasting}, author = {Althoff, Simon and Szabadv'ary, Johan Hallberg and Anderson, Jonathan and Carlsson, Lars}, booktitle = {Proceedings of the Twelfth Symposium on Conformal and Probabilistic Prediction with Applications}, pages = {100--115}, year = {2023}, editor = {Papadopoulos, Harris and Nguyen, Khuong An and Boström, Henrik and Carlsson, Lars}, volume = {204}, series = {Proceedings of Machine Learning Research}, month = {13--15 Sep}, publisher = {PMLR}, pdf = {https://proceedings.mlr.press/v204/althoff23a/althoff23a.pdf}, url = {https://proceedings.mlr.press/v204/althoff23a.html}, abstract = {We apply Conformal Predictive Distribution Systems (CPDS) and a non-exchangeable version of the traditional Conformal Prediction (NECP) method to short-term wind speed forecasting to generate probabilistic forecasts. These are compared to the more traditional Quantile Regression Forest (QRF) method. A short-term forecast is available from a few hours before the forecasted time period and is only extended a couple days into the future. The methods are supplied ensemble forecasts as input and additionally the Conformal methods are supplied with post-processed point forecasts for generating the probability distributions. In the NECP case we propose a method of producing probability distributions by creating sequentially larger prediction intervals. The methods are compared through a teaching schedule, to mimic a real-world setting. For each model update in the teaching schedule a grid-search approach is applied to select each method’s optimal hyperparameters, respectively. The methods are tested out of the box with tweaks to few hyperparameters. We also introduce a normalized nonconformity score and use it with the conformal method that handles data that violates the exchangeability assumption. The resulting probability distributions are compared to actual wind measurements through Continuous Ranked Probability Scores (CRPS) as well as their validity and efficiency of certain prediction intervals. Our results suggest that the conformal based methods, with the pre-trained underlying model, produce slightly more conservative but more efficient probability distributions than QRF at a lower computational cost. We further propose how the conformal-based methods could be improved for the application to real-world scenarios. } }
Endnote
%0 Conference Paper %T Evaluation of conformal-based probabilistic forecasting methods for short-term wind speed forecasting %A Simon Althoff %A Johan Hallberg Szabadv’ary %A Jonathan Anderson %A Lars Carlsson %B Proceedings of the Twelfth Symposium on Conformal and Probabilistic Prediction with Applications %C Proceedings of Machine Learning Research %D 2023 %E Harris Papadopoulos %E Khuong An Nguyen %E Henrik Boström %E Lars Carlsson %F pmlr-v204-althoff23a %I PMLR %P 100--115 %U https://proceedings.mlr.press/v204/althoff23a.html %V 204 %X We apply Conformal Predictive Distribution Systems (CPDS) and a non-exchangeable version of the traditional Conformal Prediction (NECP) method to short-term wind speed forecasting to generate probabilistic forecasts. These are compared to the more traditional Quantile Regression Forest (QRF) method. A short-term forecast is available from a few hours before the forecasted time period and is only extended a couple days into the future. The methods are supplied ensemble forecasts as input and additionally the Conformal methods are supplied with post-processed point forecasts for generating the probability distributions. In the NECP case we propose a method of producing probability distributions by creating sequentially larger prediction intervals. The methods are compared through a teaching schedule, to mimic a real-world setting. For each model update in the teaching schedule a grid-search approach is applied to select each method’s optimal hyperparameters, respectively. The methods are tested out of the box with tweaks to few hyperparameters. We also introduce a normalized nonconformity score and use it with the conformal method that handles data that violates the exchangeability assumption. The resulting probability distributions are compared to actual wind measurements through Continuous Ranked Probability Scores (CRPS) as well as their validity and efficiency of certain prediction intervals. Our results suggest that the conformal based methods, with the pre-trained underlying model, produce slightly more conservative but more efficient probability distributions than QRF at a lower computational cost. We further propose how the conformal-based methods could be improved for the application to real-world scenarios.
APA
Althoff, S., Szabadv’ary, J.H., Anderson, J. & Carlsson, L.. (2023). Evaluation of conformal-based probabilistic forecasting methods for short-term wind speed forecasting. Proceedings of the Twelfth Symposium on Conformal and Probabilistic Prediction with Applications, in Proceedings of Machine Learning Research 204:100-115 Available from https://proceedings.mlr.press/v204/althoff23a.html.

Related Material