Hypernetworks in Meta-Reinforcement Learning

Jacob Beck, Matthew Thomas Jackson, Risto Vuorio, Shimon Whiteson
Proceedings of The 6th Conference on Robot Learning, PMLR 205:1478-1487, 2023.

Abstract

Training a reinforcement learning (RL) agent on a real-world robotics task remains generally impractical due to sample inefficiency. Multi-task RL and meta-RL aim to improve sample efficiency by generalizing over a distribution of related tasks. However, doing so is difficult in practice: In multi-task RL, state of the art methods often fail to outperform a degenerate solution that simply learns each task separately. Hypernetworks are a promising path forward since they replicate the separate policies of the degenerate solution while also allowing for generalization across tasks, and are applicable to meta-RL. However, evidence from supervised learning suggests hypernetwork performance is highly sensitive to the initialization. In this paper, we 1) show that hypernetwork initialization is also a critical factor in meta-RL, and that naive initializations yield poor performance; 2) propose a novel hypernetwork initialization scheme that matches or exceeds the performance of a state-of-the-art approach proposed for supervised settings, as well as being simpler and more general; and 3) use this method to show that hypernetworks can improve performance in meta-RL by evaluating on multiple simulated robotics benchmarks.

Cite this Paper


BibTeX
@InProceedings{pmlr-v205-beck23a, title = {Hypernetworks in Meta-Reinforcement Learning}, author = {Beck, Jacob and Jackson, Matthew Thomas and Vuorio, Risto and Whiteson, Shimon}, booktitle = {Proceedings of The 6th Conference on Robot Learning}, pages = {1478--1487}, year = {2023}, editor = {Liu, Karen and Kulic, Dana and Ichnowski, Jeff}, volume = {205}, series = {Proceedings of Machine Learning Research}, month = {14--18 Dec}, publisher = {PMLR}, pdf = {https://proceedings.mlr.press/v205/beck23a/beck23a.pdf}, url = {https://proceedings.mlr.press/v205/beck23a.html}, abstract = {Training a reinforcement learning (RL) agent on a real-world robotics task remains generally impractical due to sample inefficiency. Multi-task RL and meta-RL aim to improve sample efficiency by generalizing over a distribution of related tasks. However, doing so is difficult in practice: In multi-task RL, state of the art methods often fail to outperform a degenerate solution that simply learns each task separately. Hypernetworks are a promising path forward since they replicate the separate policies of the degenerate solution while also allowing for generalization across tasks, and are applicable to meta-RL. However, evidence from supervised learning suggests hypernetwork performance is highly sensitive to the initialization. In this paper, we 1) show that hypernetwork initialization is also a critical factor in meta-RL, and that naive initializations yield poor performance; 2) propose a novel hypernetwork initialization scheme that matches or exceeds the performance of a state-of-the-art approach proposed for supervised settings, as well as being simpler and more general; and 3) use this method to show that hypernetworks can improve performance in meta-RL by evaluating on multiple simulated robotics benchmarks.} }
Endnote
%0 Conference Paper %T Hypernetworks in Meta-Reinforcement Learning %A Jacob Beck %A Matthew Thomas Jackson %A Risto Vuorio %A Shimon Whiteson %B Proceedings of The 6th Conference on Robot Learning %C Proceedings of Machine Learning Research %D 2023 %E Karen Liu %E Dana Kulic %E Jeff Ichnowski %F pmlr-v205-beck23a %I PMLR %P 1478--1487 %U https://proceedings.mlr.press/v205/beck23a.html %V 205 %X Training a reinforcement learning (RL) agent on a real-world robotics task remains generally impractical due to sample inefficiency. Multi-task RL and meta-RL aim to improve sample efficiency by generalizing over a distribution of related tasks. However, doing so is difficult in practice: In multi-task RL, state of the art methods often fail to outperform a degenerate solution that simply learns each task separately. Hypernetworks are a promising path forward since they replicate the separate policies of the degenerate solution while also allowing for generalization across tasks, and are applicable to meta-RL. However, evidence from supervised learning suggests hypernetwork performance is highly sensitive to the initialization. In this paper, we 1) show that hypernetwork initialization is also a critical factor in meta-RL, and that naive initializations yield poor performance; 2) propose a novel hypernetwork initialization scheme that matches or exceeds the performance of a state-of-the-art approach proposed for supervised settings, as well as being simpler and more general; and 3) use this method to show that hypernetworks can improve performance in meta-RL by evaluating on multiple simulated robotics benchmarks.
APA
Beck, J., Jackson, M.T., Vuorio, R. & Whiteson, S.. (2023). Hypernetworks in Meta-Reinforcement Learning. Proceedings of The 6th Conference on Robot Learning, in Proceedings of Machine Learning Research 205:1478-1487 Available from https://proceedings.mlr.press/v205/beck23a.html.

Related Material