DayDreamer: World Models for Physical Robot Learning

Philipp Wu, Alejandro Escontrela, Danijar Hafner, Pieter Abbeel, Ken Goldberg
Proceedings of The 6th Conference on Robot Learning, PMLR 205:2226-2240, 2023.

Abstract

To solve tasks in complex environments, robots need to learn from experience. Deep reinforcement learning is a common approach to robot learning but requires a large amount of trial and error to learn, limiting its deployment in the physical world. As a consequence, many advances in robot learning rely on simulators. On the other hand, learning inside of simulators fails to capture the complexity of the real world, is prone to simulator inaccuracies, and the resulting behaviors do not adapt to changes in the world. The Dreamer algorithm has recently shown great promise for learning from small amounts of interaction by planning within a learned world model, outperforming pure reinforcement learning in video games. Learning a world model to predict the outcomes of potential actions enables planning in imagination, reducing the amount of trial and error needed in the real environment. However, it is unknown whether Dreamer can facilitate faster learning on physical robots. In this paper, we apply Dreamer to 4 robots to learn online and directly in the real world, without any simulators. Dreamer trains a quadruped robot to roll off its back, stand up, and walk from scratch and without resets in only 1 hour. We then push the robot and find that Dreamer adapts within 10 minutes to withstand perturbations or quickly roll over and stand back up. On two different robotic arms, Dreamer learns to pick and place objects from camera images and sparse rewards, approaching human-level teleoperation performance. On a wheeled robot, Dreamer learns to navigate to a goal position purely from camera images, automatically resolving ambiguity about the robot orientation. Using the same hyperparameters across all experiments, we find that Dreamer is capable of online learning in the real world, which establishes a strong baseline. We release our infrastructure for future applications of world models to robot learning.

Cite this Paper


BibTeX
@InProceedings{pmlr-v205-wu23c, title = {DayDreamer: World Models for Physical Robot Learning}, author = {Wu, Philipp and Escontrela, Alejandro and Hafner, Danijar and Abbeel, Pieter and Goldberg, Ken}, booktitle = {Proceedings of The 6th Conference on Robot Learning}, pages = {2226--2240}, year = {2023}, editor = {Liu, Karen and Kulic, Dana and Ichnowski, Jeff}, volume = {205}, series = {Proceedings of Machine Learning Research}, month = {14--18 Dec}, publisher = {PMLR}, pdf = {https://proceedings.mlr.press/v205/wu23c/wu23c.pdf}, url = {https://proceedings.mlr.press/v205/wu23c.html}, abstract = {To solve tasks in complex environments, robots need to learn from experience. Deep reinforcement learning is a common approach to robot learning but requires a large amount of trial and error to learn, limiting its deployment in the physical world. As a consequence, many advances in robot learning rely on simulators. On the other hand, learning inside of simulators fails to capture the complexity of the real world, is prone to simulator inaccuracies, and the resulting behaviors do not adapt to changes in the world. The Dreamer algorithm has recently shown great promise for learning from small amounts of interaction by planning within a learned world model, outperforming pure reinforcement learning in video games. Learning a world model to predict the outcomes of potential actions enables planning in imagination, reducing the amount of trial and error needed in the real environment. However, it is unknown whether Dreamer can facilitate faster learning on physical robots. In this paper, we apply Dreamer to 4 robots to learn online and directly in the real world, without any simulators. Dreamer trains a quadruped robot to roll off its back, stand up, and walk from scratch and without resets in only 1 hour. We then push the robot and find that Dreamer adapts within 10 minutes to withstand perturbations or quickly roll over and stand back up. On two different robotic arms, Dreamer learns to pick and place objects from camera images and sparse rewards, approaching human-level teleoperation performance. On a wheeled robot, Dreamer learns to navigate to a goal position purely from camera images, automatically resolving ambiguity about the robot orientation. Using the same hyperparameters across all experiments, we find that Dreamer is capable of online learning in the real world, which establishes a strong baseline. We release our infrastructure for future applications of world models to robot learning.} }
Endnote
%0 Conference Paper %T DayDreamer: World Models for Physical Robot Learning %A Philipp Wu %A Alejandro Escontrela %A Danijar Hafner %A Pieter Abbeel %A Ken Goldberg %B Proceedings of The 6th Conference on Robot Learning %C Proceedings of Machine Learning Research %D 2023 %E Karen Liu %E Dana Kulic %E Jeff Ichnowski %F pmlr-v205-wu23c %I PMLR %P 2226--2240 %U https://proceedings.mlr.press/v205/wu23c.html %V 205 %X To solve tasks in complex environments, robots need to learn from experience. Deep reinforcement learning is a common approach to robot learning but requires a large amount of trial and error to learn, limiting its deployment in the physical world. As a consequence, many advances in robot learning rely on simulators. On the other hand, learning inside of simulators fails to capture the complexity of the real world, is prone to simulator inaccuracies, and the resulting behaviors do not adapt to changes in the world. The Dreamer algorithm has recently shown great promise for learning from small amounts of interaction by planning within a learned world model, outperforming pure reinforcement learning in video games. Learning a world model to predict the outcomes of potential actions enables planning in imagination, reducing the amount of trial and error needed in the real environment. However, it is unknown whether Dreamer can facilitate faster learning on physical robots. In this paper, we apply Dreamer to 4 robots to learn online and directly in the real world, without any simulators. Dreamer trains a quadruped robot to roll off its back, stand up, and walk from scratch and without resets in only 1 hour. We then push the robot and find that Dreamer adapts within 10 minutes to withstand perturbations or quickly roll over and stand back up. On two different robotic arms, Dreamer learns to pick and place objects from camera images and sparse rewards, approaching human-level teleoperation performance. On a wheeled robot, Dreamer learns to navigate to a goal position purely from camera images, automatically resolving ambiguity about the robot orientation. Using the same hyperparameters across all experiments, we find that Dreamer is capable of online learning in the real world, which establishes a strong baseline. We release our infrastructure for future applications of world models to robot learning.
APA
Wu, P., Escontrela, A., Hafner, D., Abbeel, P. & Goldberg, K.. (2023). DayDreamer: World Models for Physical Robot Learning. Proceedings of The 6th Conference on Robot Learning, in Proceedings of Machine Learning Research 205:2226-2240 Available from https://proceedings.mlr.press/v205/wu23c.html.

Related Material