From Shapley Values to Generalized Additive Models and back

Sebastian Bordt, Ulrike von Luxburg
Proceedings of The 26th International Conference on Artificial Intelligence and Statistics, PMLR 206:709-745, 2023.

Abstract

In explainable machine learning, local post-hoc explanation algorithms and inherently interpretable models are often seen as competing approaches. This work offers a partial reconciliation between the two by establishing a correspondence between Shapley Values and Generalized Additive Models (GAMs). We introduce $n$-Shapley Values, a parametric family of local post-hoc explanation algorithms that explain individual predictions with interaction terms up to order $n$. By varying the parameter $n$, we obtain a sequence of explanations that covers the entire range from Shapley Values up to a uniquely determined decomposition of the function we want to explain. The relationship between $n$-Shapley Values and this decomposition offers a functionally-grounded characterization of Shapley Values, which highlights their limitations. We then show that $n$-Shapley Values, as well as the Shapley Taylor- and Faith-Shap interaction indices, recover GAMs with interaction terms up to order $n$. This implies that the original Shapely Values recover GAMs without variable interactions. Taken together, our results provide a precise characterization of Shapley Values as they are being used in explainable machine learning. They also offer a principled interpretation of partial dependence plots of Shapley Values in terms of the underlying functional decomposition. A package for the estimation of different interaction indices is available at https://github.com/tml-tuebingen/nshap.

Cite this Paper


BibTeX
@InProceedings{pmlr-v206-bordt23a, title = {From Shapley Values to Generalized Additive Models and back}, author = {Bordt, Sebastian and von Luxburg, Ulrike}, booktitle = {Proceedings of The 26th International Conference on Artificial Intelligence and Statistics}, pages = {709--745}, year = {2023}, editor = {Ruiz, Francisco and Dy, Jennifer and van de Meent, Jan-Willem}, volume = {206}, series = {Proceedings of Machine Learning Research}, month = {25--27 Apr}, publisher = {PMLR}, pdf = {https://proceedings.mlr.press/v206/bordt23a/bordt23a.pdf}, url = {https://proceedings.mlr.press/v206/bordt23a.html}, abstract = {In explainable machine learning, local post-hoc explanation algorithms and inherently interpretable models are often seen as competing approaches. This work offers a partial reconciliation between the two by establishing a correspondence between Shapley Values and Generalized Additive Models (GAMs). We introduce $n$-Shapley Values, a parametric family of local post-hoc explanation algorithms that explain individual predictions with interaction terms up to order $n$. By varying the parameter $n$, we obtain a sequence of explanations that covers the entire range from Shapley Values up to a uniquely determined decomposition of the function we want to explain. The relationship between $n$-Shapley Values and this decomposition offers a functionally-grounded characterization of Shapley Values, which highlights their limitations. We then show that $n$-Shapley Values, as well as the Shapley Taylor- and Faith-Shap interaction indices, recover GAMs with interaction terms up to order $n$. This implies that the original Shapely Values recover GAMs without variable interactions. Taken together, our results provide a precise characterization of Shapley Values as they are being used in explainable machine learning. They also offer a principled interpretation of partial dependence plots of Shapley Values in terms of the underlying functional decomposition. A package for the estimation of different interaction indices is available at https://github.com/tml-tuebingen/nshap.} }
Endnote
%0 Conference Paper %T From Shapley Values to Generalized Additive Models and back %A Sebastian Bordt %A Ulrike von Luxburg %B Proceedings of The 26th International Conference on Artificial Intelligence and Statistics %C Proceedings of Machine Learning Research %D 2023 %E Francisco Ruiz %E Jennifer Dy %E Jan-Willem van de Meent %F pmlr-v206-bordt23a %I PMLR %P 709--745 %U https://proceedings.mlr.press/v206/bordt23a.html %V 206 %X In explainable machine learning, local post-hoc explanation algorithms and inherently interpretable models are often seen as competing approaches. This work offers a partial reconciliation between the two by establishing a correspondence between Shapley Values and Generalized Additive Models (GAMs). We introduce $n$-Shapley Values, a parametric family of local post-hoc explanation algorithms that explain individual predictions with interaction terms up to order $n$. By varying the parameter $n$, we obtain a sequence of explanations that covers the entire range from Shapley Values up to a uniquely determined decomposition of the function we want to explain. The relationship between $n$-Shapley Values and this decomposition offers a functionally-grounded characterization of Shapley Values, which highlights their limitations. We then show that $n$-Shapley Values, as well as the Shapley Taylor- and Faith-Shap interaction indices, recover GAMs with interaction terms up to order $n$. This implies that the original Shapely Values recover GAMs without variable interactions. Taken together, our results provide a precise characterization of Shapley Values as they are being used in explainable machine learning. They also offer a principled interpretation of partial dependence plots of Shapley Values in terms of the underlying functional decomposition. A package for the estimation of different interaction indices is available at https://github.com/tml-tuebingen/nshap.
APA
Bordt, S. & von Luxburg, U.. (2023). From Shapley Values to Generalized Additive Models and back. Proceedings of The 26th International Conference on Artificial Intelligence and Statistics, in Proceedings of Machine Learning Research 206:709-745 Available from https://proceedings.mlr.press/v206/bordt23a.html.

Related Material