PAC Learning of Halfspaces with Malicious Noise in Nearly Linear Time

Jie Shen
Proceedings of The 26th International Conference on Artificial Intelligence and Statistics, PMLR 206:30-46, 2023.

Abstract

We study the problem of efficient PAC learning of halfspaces in $\mathbb{R}^d$ in the presence of the malicious noise, where a fraction of the training samples are adversarially corrupted. A series of recent works have developed polynomial-time algorithms that enjoy near-optimal sample complexity and noise tolerance, yet leaving open whether a linear-time algorithm exists and matches these appealing statistical performance guarantees. In this work, we give an affirmative answer by developing an algorithm that runs in time $\tilde{O}(m d )$, where $m = \tilde{O}(\frac{d}{\epsilon})$ is the sample size and $\epsilon \in (0, 1)$ is the target error rate. Notably, the computational complexity of all prior algorithms suffer either a high order dependence on the problem size, or is implicitly proportional to $\frac{1}{\epsilon^2}$ through the sample size. Our key idea is to combine localization and an approximate version of matrix multiplicative weights update method to progressively downweight the contribution of the corrupted samples while refining the learned halfspace.

Cite this Paper


BibTeX
@InProceedings{pmlr-v206-shen23a, title = {PAC Learning of Halfspaces with Malicious Noise in Nearly Linear Time}, author = {Shen, Jie}, booktitle = {Proceedings of The 26th International Conference on Artificial Intelligence and Statistics}, pages = {30--46}, year = {2023}, editor = {Ruiz, Francisco and Dy, Jennifer and van de Meent, Jan-Willem}, volume = {206}, series = {Proceedings of Machine Learning Research}, month = {25--27 Apr}, publisher = {PMLR}, pdf = {https://proceedings.mlr.press/v206/shen23a/shen23a.pdf}, url = {https://proceedings.mlr.press/v206/shen23a.html}, abstract = {We study the problem of efficient PAC learning of halfspaces in $\mathbb{R}^d$ in the presence of the malicious noise, where a fraction of the training samples are adversarially corrupted. A series of recent works have developed polynomial-time algorithms that enjoy near-optimal sample complexity and noise tolerance, yet leaving open whether a linear-time algorithm exists and matches these appealing statistical performance guarantees. In this work, we give an affirmative answer by developing an algorithm that runs in time $\tilde{O}(m d )$, where $m = \tilde{O}(\frac{d}{\epsilon})$ is the sample size and $\epsilon \in (0, 1)$ is the target error rate. Notably, the computational complexity of all prior algorithms suffer either a high order dependence on the problem size, or is implicitly proportional to $\frac{1}{\epsilon^2}$ through the sample size. Our key idea is to combine localization and an approximate version of matrix multiplicative weights update method to progressively downweight the contribution of the corrupted samples while refining the learned halfspace.} }
Endnote
%0 Conference Paper %T PAC Learning of Halfspaces with Malicious Noise in Nearly Linear Time %A Jie Shen %B Proceedings of The 26th International Conference on Artificial Intelligence and Statistics %C Proceedings of Machine Learning Research %D 2023 %E Francisco Ruiz %E Jennifer Dy %E Jan-Willem van de Meent %F pmlr-v206-shen23a %I PMLR %P 30--46 %U https://proceedings.mlr.press/v206/shen23a.html %V 206 %X We study the problem of efficient PAC learning of halfspaces in $\mathbb{R}^d$ in the presence of the malicious noise, where a fraction of the training samples are adversarially corrupted. A series of recent works have developed polynomial-time algorithms that enjoy near-optimal sample complexity and noise tolerance, yet leaving open whether a linear-time algorithm exists and matches these appealing statistical performance guarantees. In this work, we give an affirmative answer by developing an algorithm that runs in time $\tilde{O}(m d )$, where $m = \tilde{O}(\frac{d}{\epsilon})$ is the sample size and $\epsilon \in (0, 1)$ is the target error rate. Notably, the computational complexity of all prior algorithms suffer either a high order dependence on the problem size, or is implicitly proportional to $\frac{1}{\epsilon^2}$ through the sample size. Our key idea is to combine localization and an approximate version of matrix multiplicative weights update method to progressively downweight the contribution of the corrupted samples while refining the learned halfspace.
APA
Shen, J.. (2023). PAC Learning of Halfspaces with Malicious Noise in Nearly Linear Time. Proceedings of The 26th International Conference on Artificial Intelligence and Statistics, in Proceedings of Machine Learning Research 206:30-46 Available from https://proceedings.mlr.press/v206/shen23a.html.

Related Material