[edit]
Nonstochastic Contextual Combinatorial Bandits
Proceedings of The 26th International Conference on Artificial Intelligence and Statistics, PMLR 206:8771-8813, 2023.
Abstract
We study a contextual version of online combinatorial optimisation with full and semi-bandit feedback. In this sequential decision-making problem, an online learner has to select an action from a combinatorial decision space after seeing a vector-valued context in each round. As a result of its action, the learner incurs a loss that is a bilinear function of the context vector and the vector representation of the chosen action. We consider two natural versions of the problem: semi-bandit where the losses are revealed for each component appearing in the learner’s combinatorial action, and full-bandit where only the total loss is observed. We design computationally efficient algorithms based on a new loss estimator that takes advantage of the special structure of the problem, and show regret bounds order $\sqrt{T}$ with respect to the time horizon. The bounds demonstrate polynomial scaling with the relevant problem parameters which is shown to be nearly optimal. The theoretical results are complemented by a set of experiments on simulated data.