Federated Learning for Appearance-based Gaze Estimation in the Wild

Mayar Elfares, Zhiming Hu, Pascal Reisert, Andreas Bulling, Ralf Küsters
Proceedings of The 1st Gaze Meets ML workshop, PMLR 210:20-36, 2023.

Abstract

Gaze estimation methods have significantly matured in recent years, but the large number of eye images required to train deep learning models poses significant privacy risks. In addition, the heterogeneous data distribution across different users can significantly hinder the training process. In this work, we propose the first federated learning approach for gaze estimation to preserve the privacy of gaze data. We further employ pseudo-gradient optimisation to adapt our federated learning approach to the divergent model updates to address the heterogeneous nature of in-the-wild gaze data in collaborative setups. We evaluate our approach on a real-world dataset (MPIIGaze) and show that our work enhances the privacy guarantees of conventional appearance-based gaze estimation methods, handles the convergence issues of gaze estimators, and significantly outperforms vanilla federated learning by 15.8% (from a mean error of 10.63 degrees to 8.95 degrees). As such, our work paves the way to develop privacy-aware collaborative learning setups for gaze estimation while maintaining the model’s performance.

Cite this Paper


BibTeX
@InProceedings{pmlr-v210-elfares23a, title = {Federated Learning for Appearance-based Gaze Estimation in the Wild}, author = {Elfares, Mayar and Hu, Zhiming and Reisert, Pascal and Bulling, Andreas and K{\"u}sters, Ralf}, booktitle = {Proceedings of The 1st Gaze Meets ML workshop}, pages = {20--36}, year = {2023}, editor = {Lourentzou, Ismini and Wu, Joy and Kashyap, Satyananda and Karargyris, Alexandros and Celi, Leo Anthony and Kawas, Ban and Talathi, Sachin}, volume = {210}, series = {Proceedings of Machine Learning Research}, month = {03 Dec}, publisher = {PMLR}, pdf = {https://proceedings.mlr.press/v210/elfares23a/elfares23a.pdf}, url = {https://proceedings.mlr.press/v210/elfares23a.html}, abstract = {Gaze estimation methods have significantly matured in recent years, but the large number of eye images required to train deep learning models poses significant privacy risks. In addition, the heterogeneous data distribution across different users can significantly hinder the training process. In this work, we propose the first federated learning approach for gaze estimation to preserve the privacy of gaze data. We further employ pseudo-gradient optimisation to adapt our federated learning approach to the divergent model updates to address the heterogeneous nature of in-the-wild gaze data in collaborative setups. We evaluate our approach on a real-world dataset (MPIIGaze) and show that our work enhances the privacy guarantees of conventional appearance-based gaze estimation methods, handles the convergence issues of gaze estimators, and significantly outperforms vanilla federated learning by 15.8% (from a mean error of 10.63 degrees to 8.95 degrees). As such, our work paves the way to develop privacy-aware collaborative learning setups for gaze estimation while maintaining the model’s performance.} }
Endnote
%0 Conference Paper %T Federated Learning for Appearance-based Gaze Estimation in the Wild %A Mayar Elfares %A Zhiming Hu %A Pascal Reisert %A Andreas Bulling %A Ralf Küsters %B Proceedings of The 1st Gaze Meets ML workshop %C Proceedings of Machine Learning Research %D 2023 %E Ismini Lourentzou %E Joy Wu %E Satyananda Kashyap %E Alexandros Karargyris %E Leo Anthony Celi %E Ban Kawas %E Sachin Talathi %F pmlr-v210-elfares23a %I PMLR %P 20--36 %U https://proceedings.mlr.press/v210/elfares23a.html %V 210 %X Gaze estimation methods have significantly matured in recent years, but the large number of eye images required to train deep learning models poses significant privacy risks. In addition, the heterogeneous data distribution across different users can significantly hinder the training process. In this work, we propose the first federated learning approach for gaze estimation to preserve the privacy of gaze data. We further employ pseudo-gradient optimisation to adapt our federated learning approach to the divergent model updates to address the heterogeneous nature of in-the-wild gaze data in collaborative setups. We evaluate our approach on a real-world dataset (MPIIGaze) and show that our work enhances the privacy guarantees of conventional appearance-based gaze estimation methods, handles the convergence issues of gaze estimators, and significantly outperforms vanilla federated learning by 15.8% (from a mean error of 10.63 degrees to 8.95 degrees). As such, our work paves the way to develop privacy-aware collaborative learning setups for gaze estimation while maintaining the model’s performance.
APA
Elfares, M., Hu, Z., Reisert, P., Bulling, A. & Küsters, R.. (2023). Federated Learning for Appearance-based Gaze Estimation in the Wild. Proceedings of The 1st Gaze Meets ML workshop, in Proceedings of Machine Learning Research 210:20-36 Available from https://proceedings.mlr.press/v210/elfares23a.html.

Related Material