[edit]
Benchmarking State-Merging Algorithms for Learning Regular Languages
Proceedings of 16th edition of the International Conference on Grammatical Inference, PMLR 217:181-198, 2023.
Abstract
The state-merging algorithms RPNI, EDSM, and ALERGIA are tested on MLRegTest, a benchmark for the learning of regular languages citep{heinz-etal-2022-mlregtest}. MLRegTest contains training, development, and test data for 1,800 regular languages, which themselves are from several well-studied subregular classes. The results show that there is large variation in the performance of these algorithms on the benchmark with EDSM performing the best overall. Furthermore, the mean accuracies on the test data for all three state-merging algorithms are less than the mean accuracies obtained by the neural networks citet{heinz-etal-2022-mlregtest} studied. A further experiment augments the training data in MLRegtest with shorter strings and shows they dramatically improve the performance of the state-merging algorithms.