EASL: A Framework for Designing, Implementing, and Evaluating ML Solutions in Clinical Healthcare Settings

Eric Prince, Todd C. Hankinson, Carsten Görg
Proceedings of the 8th Machine Learning for Healthcare Conference, PMLR 219:612-630, 2023.

Abstract

We introduce the Explainable Analytical Systems Lab (EASL) framework, an end-to-end solution designed to facilitate the development, implementation, and evaluation of clinical machine learning (ML) tools. EASL is highly versatile and applicable to a variety of contexts and includes resources for data management, ML model development, visualization and user interface development, service hosting, and usage analytics. To demonstrate its practical applications, we present the EASL framework in the context of a case study: designing and evaluating a deep learning classifier to predict diagnoses from medical imaging. The framework is composed of three modules, each with their own set of resources. The Workbench module stores data and develops initial ML models, the Canvas module contains a medical imaging viewer and web development framework, and the Studio module hosts the ML model and provides web analytics and support for conducting user studies. EASL encourages model developers to take a holistic view by integrating the model development, implementation, and evaluation into one framework, and thus ensures that models are both effective and reliable when used in a clinical setting. EASL contributes to our understanding of machine learning applied to healthcare by providing a comprehensive framework that makes it easier to develop and evaluate ML tools within a clinical setting.

Cite this Paper


BibTeX
@InProceedings{pmlr-v219-prince23a, title = {EASL: A Framework for Designing, Implementing, and Evaluating ML Solutions in Clinical Healthcare Settings}, author = {Prince, Eric and Hankinson, Todd C. and G\"org, Carsten}, booktitle = {Proceedings of the 8th Machine Learning for Healthcare Conference}, pages = {612--630}, year = {2023}, editor = {Deshpande, Kaivalya and Fiterau, Madalina and Joshi, Shalmali and Lipton, Zachary and Ranganath, Rajesh and Urteaga, Iñigo and Yeung, Serene}, volume = {219}, series = {Proceedings of Machine Learning Research}, month = {11--12 Aug}, publisher = {PMLR}, pdf = {https://proceedings.mlr.press/v219/prince23a/prince23a.pdf}, url = {https://proceedings.mlr.press/v219/prince23a.html}, abstract = {We introduce the Explainable Analytical Systems Lab (EASL) framework, an end-to-end solution designed to facilitate the development, implementation, and evaluation of clinical machine learning (ML) tools. EASL is highly versatile and applicable to a variety of contexts and includes resources for data management, ML model development, visualization and user interface development, service hosting, and usage analytics. To demonstrate its practical applications, we present the EASL framework in the context of a case study: designing and evaluating a deep learning classifier to predict diagnoses from medical imaging. The framework is composed of three modules, each with their own set of resources. The Workbench module stores data and develops initial ML models, the Canvas module contains a medical imaging viewer and web development framework, and the Studio module hosts the ML model and provides web analytics and support for conducting user studies. EASL encourages model developers to take a holistic view by integrating the model development, implementation, and evaluation into one framework, and thus ensures that models are both effective and reliable when used in a clinical setting. EASL contributes to our understanding of machine learning applied to healthcare by providing a comprehensive framework that makes it easier to develop and evaluate ML tools within a clinical setting.} }
Endnote
%0 Conference Paper %T EASL: A Framework for Designing, Implementing, and Evaluating ML Solutions in Clinical Healthcare Settings %A Eric Prince %A Todd C. Hankinson %A Carsten Görg %B Proceedings of the 8th Machine Learning for Healthcare Conference %C Proceedings of Machine Learning Research %D 2023 %E Kaivalya Deshpande %E Madalina Fiterau %E Shalmali Joshi %E Zachary Lipton %E Rajesh Ranganath %E Iñigo Urteaga %E Serene Yeung %F pmlr-v219-prince23a %I PMLR %P 612--630 %U https://proceedings.mlr.press/v219/prince23a.html %V 219 %X We introduce the Explainable Analytical Systems Lab (EASL) framework, an end-to-end solution designed to facilitate the development, implementation, and evaluation of clinical machine learning (ML) tools. EASL is highly versatile and applicable to a variety of contexts and includes resources for data management, ML model development, visualization and user interface development, service hosting, and usage analytics. To demonstrate its practical applications, we present the EASL framework in the context of a case study: designing and evaluating a deep learning classifier to predict diagnoses from medical imaging. The framework is composed of three modules, each with their own set of resources. The Workbench module stores data and develops initial ML models, the Canvas module contains a medical imaging viewer and web development framework, and the Studio module hosts the ML model and provides web analytics and support for conducting user studies. EASL encourages model developers to take a holistic view by integrating the model development, implementation, and evaluation into one framework, and thus ensures that models are both effective and reliable when used in a clinical setting. EASL contributes to our understanding of machine learning applied to healthcare by providing a comprehensive framework that makes it easier to develop and evaluate ML tools within a clinical setting.
APA
Prince, E., Hankinson, T.C. & Görg, C.. (2023). EASL: A Framework for Designing, Implementing, and Evaluating ML Solutions in Clinical Healthcare Settings. Proceedings of the 8th Machine Learning for Healthcare Conference, in Proceedings of Machine Learning Research 219:612-630 Available from https://proceedings.mlr.press/v219/prince23a.html.

Related Material