Interpretable Mechanistic Representations for Meal-level Glycemic Control in the Wild

Ke Alexander Wang, Emily B. Fox
Proceedings of the 3rd Machine Learning for Health Symposium, PMLR 225:607-622, 2023.

Abstract

Diabetes encompasses a complex landscape of glycemic control that varies widely among individuals. However, current methods do not faithfully capture this variability at the meal level. On the one hand, expert-crafted features lack the flexibility of data-driven methods; on the other hand, learned representations tend to be uninterpretable which hampers clinical adoption. In this paper, we propose a hybrid variational autoencoder to learn interpretable representations of CGM and meal data. Our method grounds the latent space to the inputs of a mechanistic differential equation, producing embeddings that reflect physiological quantities, such as insulin sensitivity, glucose effectiveness, and basal glucose levels. Moreover, we introduce a novel method to infer the glucose appearance rate, making the mechanistic model robust to unreliable meal logs. On a dataset of CGM and self-reported meals from individuals with type-2 diabetes and pre-diabetes, our unsupervised representation discovers a separation between individuals proportional to their disease severity. Our embeddings produce clusters that are up to 4x better than naive, expert, black-box, and pure mechanistic features. Our method provides a nuanced, yet interpretable, embedding space to compare glycemic control within and across individuals, directly learnable from in-the-wild data.

Cite this Paper


BibTeX
@InProceedings{pmlr-v225-wang23a, title = {Interpretable Mechanistic Representations for Meal-level Glycemic Control in the Wild}, author = {Wang, Ke Alexander and Fox, Emily B.}, booktitle = {Proceedings of the 3rd Machine Learning for Health Symposium}, pages = {607--622}, year = {2023}, editor = {Hegselmann, Stefan and Parziale, Antonio and Shanmugam, Divya and Tang, Shengpu and Asiedu, Mercy Nyamewaa and Chang, Serina and Hartvigsen, Tom and Singh, Harvineet}, volume = {225}, series = {Proceedings of Machine Learning Research}, month = {10 Dec}, publisher = {PMLR}, pdf = {https://proceedings.mlr.press/v225/wang23a/wang23a.pdf}, url = {https://proceedings.mlr.press/v225/wang23a.html}, abstract = {Diabetes encompasses a complex landscape of glycemic control that varies widely among individuals. However, current methods do not faithfully capture this variability at the meal level. On the one hand, expert-crafted features lack the flexibility of data-driven methods; on the other hand, learned representations tend to be uninterpretable which hampers clinical adoption. In this paper, we propose a hybrid variational autoencoder to learn interpretable representations of CGM and meal data. Our method grounds the latent space to the inputs of a mechanistic differential equation, producing embeddings that reflect physiological quantities, such as insulin sensitivity, glucose effectiveness, and basal glucose levels. Moreover, we introduce a novel method to infer the glucose appearance rate, making the mechanistic model robust to unreliable meal logs. On a dataset of CGM and self-reported meals from individuals with type-2 diabetes and pre-diabetes, our unsupervised representation discovers a separation between individuals proportional to their disease severity. Our embeddings produce clusters that are up to 4x better than naive, expert, black-box, and pure mechanistic features. Our method provides a nuanced, yet interpretable, embedding space to compare glycemic control within and across individuals, directly learnable from in-the-wild data.} }
Endnote
%0 Conference Paper %T Interpretable Mechanistic Representations for Meal-level Glycemic Control in the Wild %A Ke Alexander Wang %A Emily B. Fox %B Proceedings of the 3rd Machine Learning for Health Symposium %C Proceedings of Machine Learning Research %D 2023 %E Stefan Hegselmann %E Antonio Parziale %E Divya Shanmugam %E Shengpu Tang %E Mercy Nyamewaa Asiedu %E Serina Chang %E Tom Hartvigsen %E Harvineet Singh %F pmlr-v225-wang23a %I PMLR %P 607--622 %U https://proceedings.mlr.press/v225/wang23a.html %V 225 %X Diabetes encompasses a complex landscape of glycemic control that varies widely among individuals. However, current methods do not faithfully capture this variability at the meal level. On the one hand, expert-crafted features lack the flexibility of data-driven methods; on the other hand, learned representations tend to be uninterpretable which hampers clinical adoption. In this paper, we propose a hybrid variational autoencoder to learn interpretable representations of CGM and meal data. Our method grounds the latent space to the inputs of a mechanistic differential equation, producing embeddings that reflect physiological quantities, such as insulin sensitivity, glucose effectiveness, and basal glucose levels. Moreover, we introduce a novel method to infer the glucose appearance rate, making the mechanistic model robust to unreliable meal logs. On a dataset of CGM and self-reported meals from individuals with type-2 diabetes and pre-diabetes, our unsupervised representation discovers a separation between individuals proportional to their disease severity. Our embeddings produce clusters that are up to 4x better than naive, expert, black-box, and pure mechanistic features. Our method provides a nuanced, yet interpretable, embedding space to compare glycemic control within and across individuals, directly learnable from in-the-wild data.
APA
Wang, K.A. & Fox, E.B.. (2023). Interpretable Mechanistic Representations for Meal-level Glycemic Control in the Wild. Proceedings of the 3rd Machine Learning for Health Symposium, in Proceedings of Machine Learning Research 225:607-622 Available from https://proceedings.mlr.press/v225/wang23a.html.

Related Material