Domain Adaptation using Silver Standard Masks for Lateral Ventricle Segmentation in FLAIR MRI

Owen Crystal, April Khademi, Alan R Moody, Pejman J Maralani, Sandra E Black
Medical Imaging with Deep Learning, PMLR 227:1895-1909, 2024.

Abstract

Lateral ventricular volume (LVV) is an important biomarker for clinical investigation. We present the first transfer learning-based LVV segmentation method for fluid-attenuated inversion recovery (FLAIR) MRI. To mitigate covariate shifts between source and target domains, this work proposes an domain adaptation method that optimizes performance on three target datasets. Silver standard (SS) masks were generated from the target domain using a novel conventional image processing ventricular segmentation algorithm and used to supplement the gold standard (GS) data from the source domain, Canadian Atherosclerosis Imaging Network (CAIN). Four models were tested on held-out test sets from four datasets: 1) SS+GS: trained on target SS masks and fine-tuned on source GS masks, 2) GS+SS: trained on source GS masks and fine-tuned on target SS masks, 3) trained on source GS (GS CAIN Only) and 4) trained on target SS masks (SS Only). The SS+GS model had the best and most consistent performance (mean DSC = 0.89, CoV = 0.05) and showed significantly p < 0.05) higher DSC compared to the GS-only model on three target domains. Results suggest pre-training with noisy labels from the target domain allows the model to adapt to the dataset-specific characteristics and provides robust parameter initialization while fine-tuning with GS masks allows the model to learn detailed features. This method has wide application to other medical imaging problems where labeled data is scarce, and can be used as a per-dataset calibration method to accelerate wide-scale adoption.

Cite this Paper


BibTeX
@InProceedings{pmlr-v227-crystal24a, title = {Domain Adaptation using Silver Standard Masks for Lateral Ventricle Segmentation in FLAIR MRI}, author = {Crystal, Owen and Khademi, April and Moody, Alan R and Maralani, Pejman J and Black, Sandra E}, booktitle = {Medical Imaging with Deep Learning}, pages = {1895--1909}, year = {2024}, editor = {Oguz, Ipek and Noble, Jack and Li, Xiaoxiao and Styner, Martin and Baumgartner, Christian and Rusu, Mirabela and Heinmann, Tobias and Kontos, Despina and Landman, Bennett and Dawant, Benoit}, volume = {227}, series = {Proceedings of Machine Learning Research}, month = {10--12 Jul}, publisher = {PMLR}, pdf = {https://proceedings.mlr.press/v227/crystal24a/crystal24a.pdf}, url = {https://proceedings.mlr.press/v227/crystal24a.html}, abstract = {Lateral ventricular volume (LVV) is an important biomarker for clinical investigation. We present the first transfer learning-based LVV segmentation method for fluid-attenuated inversion recovery (FLAIR) MRI. To mitigate covariate shifts between source and target domains, this work proposes an domain adaptation method that optimizes performance on three target datasets. Silver standard (SS) masks were generated from the target domain using a novel conventional image processing ventricular segmentation algorithm and used to supplement the gold standard (GS) data from the source domain, Canadian Atherosclerosis Imaging Network (CAIN). Four models were tested on held-out test sets from four datasets: 1) SS+GS: trained on target SS masks and fine-tuned on source GS masks, 2) GS+SS: trained on source GS masks and fine-tuned on target SS masks, 3) trained on source GS (GS CAIN Only) and 4) trained on target SS masks (SS Only). The SS+GS model had the best and most consistent performance (mean DSC = 0.89, CoV = 0.05) and showed significantly p < 0.05) higher DSC compared to the GS-only model on three target domains. Results suggest pre-training with noisy labels from the target domain allows the model to adapt to the dataset-specific characteristics and provides robust parameter initialization while fine-tuning with GS masks allows the model to learn detailed features. This method has wide application to other medical imaging problems where labeled data is scarce, and can be used as a per-dataset calibration method to accelerate wide-scale adoption.} }
Endnote
%0 Conference Paper %T Domain Adaptation using Silver Standard Masks for Lateral Ventricle Segmentation in FLAIR MRI %A Owen Crystal %A April Khademi %A Alan R Moody %A Pejman J Maralani %A Sandra E Black %B Medical Imaging with Deep Learning %C Proceedings of Machine Learning Research %D 2024 %E Ipek Oguz %E Jack Noble %E Xiaoxiao Li %E Martin Styner %E Christian Baumgartner %E Mirabela Rusu %E Tobias Heinmann %E Despina Kontos %E Bennett Landman %E Benoit Dawant %F pmlr-v227-crystal24a %I PMLR %P 1895--1909 %U https://proceedings.mlr.press/v227/crystal24a.html %V 227 %X Lateral ventricular volume (LVV) is an important biomarker for clinical investigation. We present the first transfer learning-based LVV segmentation method for fluid-attenuated inversion recovery (FLAIR) MRI. To mitigate covariate shifts between source and target domains, this work proposes an domain adaptation method that optimizes performance on three target datasets. Silver standard (SS) masks were generated from the target domain using a novel conventional image processing ventricular segmentation algorithm and used to supplement the gold standard (GS) data from the source domain, Canadian Atherosclerosis Imaging Network (CAIN). Four models were tested on held-out test sets from four datasets: 1) SS+GS: trained on target SS masks and fine-tuned on source GS masks, 2) GS+SS: trained on source GS masks and fine-tuned on target SS masks, 3) trained on source GS (GS CAIN Only) and 4) trained on target SS masks (SS Only). The SS+GS model had the best and most consistent performance (mean DSC = 0.89, CoV = 0.05) and showed significantly p < 0.05) higher DSC compared to the GS-only model on three target domains. Results suggest pre-training with noisy labels from the target domain allows the model to adapt to the dataset-specific characteristics and provides robust parameter initialization while fine-tuning with GS masks allows the model to learn detailed features. This method has wide application to other medical imaging problems where labeled data is scarce, and can be used as a per-dataset calibration method to accelerate wide-scale adoption.
APA
Crystal, O., Khademi, A., Moody, A.R., Maralani, P.J. & Black, S.E.. (2024). Domain Adaptation using Silver Standard Masks for Lateral Ventricle Segmentation in FLAIR MRI. Medical Imaging with Deep Learning, in Proceedings of Machine Learning Research 227:1895-1909 Available from https://proceedings.mlr.press/v227/crystal24a.html.

Related Material