Reference-based MRI Reconstruction Using Texture Transformer

Pengfei Guo, Vishal M. Patel
Medical Imaging with Deep Learning, PMLR 227:599-616, 2024.

Abstract

Deep Learning (DL) based methods for magnetic resonance (MR) image reconstruction have been shown to produce superior performance. However, previous methods either only leverage under-sampled data or require a paired fully-sampled auxiliary MR sequence to perform guidance-based reconstruction. Consequently, existing approaches neglect to explore attention mechanisms that can transfer texture from reference data to under-sampled data within a single MR sequence, which either limits the performance of these approaches or increases the difficulty of data acquisition. In this paper, we propose a novel $\textbf{T}$exture $\textbf{T}$ransformer $\textbf{M}$odule ($\textbf{TTM}$) for the reference-based MR image reconstruction. The TTM facilitates joint feature learning across under-sampled and reference data, so feature correspondences can be discovered by attention and accurate texture features can be leveraged during reconstruction. Notably, TTM can be stacked on prior MRI reconstruction methods to improve their performance. In addition, a $\textbf{R}$ecurrent $\textbf{T}$ransformer $\textbf{R}$econstruction backbone ($\textbf{RTR}$) is proposed to further improve the performance in a unified framework. Extensive experiments demonstrate the effectiveness of TTM and show that RTR can achieve the state-of-the-art results on multiple datasets. Implementation code and pre-trained weights will be made public after the review process.

Cite this Paper


BibTeX
@InProceedings{pmlr-v227-guo24a, title = {Reference-based MRI Reconstruction Using Texture Transformer}, author = {Guo, Pengfei and Patel, Vishal M.}, booktitle = {Medical Imaging with Deep Learning}, pages = {599--616}, year = {2024}, editor = {Oguz, Ipek and Noble, Jack and Li, Xiaoxiao and Styner, Martin and Baumgartner, Christian and Rusu, Mirabela and Heinmann, Tobias and Kontos, Despina and Landman, Bennett and Dawant, Benoit}, volume = {227}, series = {Proceedings of Machine Learning Research}, month = {10--12 Jul}, publisher = {PMLR}, pdf = {https://proceedings.mlr.press/v227/guo24a/guo24a.pdf}, url = {https://proceedings.mlr.press/v227/guo24a.html}, abstract = {Deep Learning (DL) based methods for magnetic resonance (MR) image reconstruction have been shown to produce superior performance. However, previous methods either only leverage under-sampled data or require a paired fully-sampled auxiliary MR sequence to perform guidance-based reconstruction. Consequently, existing approaches neglect to explore attention mechanisms that can transfer texture from reference data to under-sampled data within a single MR sequence, which either limits the performance of these approaches or increases the difficulty of data acquisition. In this paper, we propose a novel $\textbf{T}$exture $\textbf{T}$ransformer $\textbf{M}$odule ($\textbf{TTM}$) for the reference-based MR image reconstruction. The TTM facilitates joint feature learning across under-sampled and reference data, so feature correspondences can be discovered by attention and accurate texture features can be leveraged during reconstruction. Notably, TTM can be stacked on prior MRI reconstruction methods to improve their performance. In addition, a $\textbf{R}$ecurrent $\textbf{T}$ransformer $\textbf{R}$econstruction backbone ($\textbf{RTR}$) is proposed to further improve the performance in a unified framework. Extensive experiments demonstrate the effectiveness of TTM and show that RTR can achieve the state-of-the-art results on multiple datasets. Implementation code and pre-trained weights will be made public after the review process.} }
Endnote
%0 Conference Paper %T Reference-based MRI Reconstruction Using Texture Transformer %A Pengfei Guo %A Vishal M. Patel %B Medical Imaging with Deep Learning %C Proceedings of Machine Learning Research %D 2024 %E Ipek Oguz %E Jack Noble %E Xiaoxiao Li %E Martin Styner %E Christian Baumgartner %E Mirabela Rusu %E Tobias Heinmann %E Despina Kontos %E Bennett Landman %E Benoit Dawant %F pmlr-v227-guo24a %I PMLR %P 599--616 %U https://proceedings.mlr.press/v227/guo24a.html %V 227 %X Deep Learning (DL) based methods for magnetic resonance (MR) image reconstruction have been shown to produce superior performance. However, previous methods either only leverage under-sampled data or require a paired fully-sampled auxiliary MR sequence to perform guidance-based reconstruction. Consequently, existing approaches neglect to explore attention mechanisms that can transfer texture from reference data to under-sampled data within a single MR sequence, which either limits the performance of these approaches or increases the difficulty of data acquisition. In this paper, we propose a novel $\textbf{T}$exture $\textbf{T}$ransformer $\textbf{M}$odule ($\textbf{TTM}$) for the reference-based MR image reconstruction. The TTM facilitates joint feature learning across under-sampled and reference data, so feature correspondences can be discovered by attention and accurate texture features can be leveraged during reconstruction. Notably, TTM can be stacked on prior MRI reconstruction methods to improve their performance. In addition, a $\textbf{R}$ecurrent $\textbf{T}$ransformer $\textbf{R}$econstruction backbone ($\textbf{RTR}$) is proposed to further improve the performance in a unified framework. Extensive experiments demonstrate the effectiveness of TTM and show that RTR can achieve the state-of-the-art results on multiple datasets. Implementation code and pre-trained weights will be made public after the review process.
APA
Guo, P. & Patel, V.M.. (2024). Reference-based MRI Reconstruction Using Texture Transformer. Medical Imaging with Deep Learning, in Proceedings of Machine Learning Research 227:599-616 Available from https://proceedings.mlr.press/v227/guo24a.html.

Related Material