MultiTask Learning for accelerated-MRI Reconstruction and Segmentation of Brain Lesions in Multiple Sclerosis

Dimitrios Karkalousos, Ivana Isgum, Henk Marquering, Matthan W. A. Caan
Medical Imaging with Deep Learning, PMLR 227:991-1005, 2024.

Abstract

This work proposes MultiTask Learning for accelerated-MRI Reconstruction and Segmentation (MTLRS). Unlike the common single-task approaches, MultiTask Learning identifies relations between multiple tasks to improve the performance of all tasks. The proposed MTLRS consists of a unique cascading architecture, where a recurrent reconstruction network and a segmentation network inform each other through hidden states. The features of the two networks are shared and implicitly enforced as inductive bias. To evaluate the benefit of MTLRS, we compare performing the two tasks of accelerated-MRI reconstruction and MRI segmentation with pre-trained, sequential, end-to-end, and joint approaches. A synthetic multicoil dataset is used to train, validate, and test all approaches with five-fold cross-validation. The dataset consists of 3D FLAIR brain data of relapsing-remitting Multiple Sclerosis patients with known white matter lesions. The acquisition is prospectively undersampled by approximately 7.5 times compared to clinical standards. Reconstruction performance is evaluated by Structural Similarity Index Measure (SSIM) and Peak Signal-to-Noise Ratio (PSNR). Segmentation performance is evaluated by Dice score for combined brain tissue and white matter lesion segmentation and by per lesion Dice score. Results show that MTLRS outperforms other evaluated approaches, providing high-quality reconstructions and accurate white matter lesion segmentation. A significant correlation was found between the performance of both tasks (SSIM and per lesion Dice score, $\rho=0.92$, $p=0.0005$). Our proposed MTLRS demonstrates that accelerated-MRI reconstruction and MRI segmentation can be effectively combined to improve performance on both tasks, potentially benefiting clinical settings.

Cite this Paper


BibTeX
@InProceedings{pmlr-v227-karkalousos24a, title = {MultiTask Learning for accelerated-MRI Reconstruction and Segmentation of Brain Lesions in Multiple Sclerosis}, author = {Karkalousos, Dimitrios and Isgum, Ivana and Marquering, Henk and Caan, Matthan W. A.}, booktitle = {Medical Imaging with Deep Learning}, pages = {991--1005}, year = {2024}, editor = {Oguz, Ipek and Noble, Jack and Li, Xiaoxiao and Styner, Martin and Baumgartner, Christian and Rusu, Mirabela and Heinmann, Tobias and Kontos, Despina and Landman, Bennett and Dawant, Benoit}, volume = {227}, series = {Proceedings of Machine Learning Research}, month = {10--12 Jul}, publisher = {PMLR}, pdf = {https://proceedings.mlr.press/v227/karkalousos24a/karkalousos24a.pdf}, url = {https://proceedings.mlr.press/v227/karkalousos24a.html}, abstract = {This work proposes MultiTask Learning for accelerated-MRI Reconstruction and Segmentation (MTLRS). Unlike the common single-task approaches, MultiTask Learning identifies relations between multiple tasks to improve the performance of all tasks. The proposed MTLRS consists of a unique cascading architecture, where a recurrent reconstruction network and a segmentation network inform each other through hidden states. The features of the two networks are shared and implicitly enforced as inductive bias. To evaluate the benefit of MTLRS, we compare performing the two tasks of accelerated-MRI reconstruction and MRI segmentation with pre-trained, sequential, end-to-end, and joint approaches. A synthetic multicoil dataset is used to train, validate, and test all approaches with five-fold cross-validation. The dataset consists of 3D FLAIR brain data of relapsing-remitting Multiple Sclerosis patients with known white matter lesions. The acquisition is prospectively undersampled by approximately 7.5 times compared to clinical standards. Reconstruction performance is evaluated by Structural Similarity Index Measure (SSIM) and Peak Signal-to-Noise Ratio (PSNR). Segmentation performance is evaluated by Dice score for combined brain tissue and white matter lesion segmentation and by per lesion Dice score. Results show that MTLRS outperforms other evaluated approaches, providing high-quality reconstructions and accurate white matter lesion segmentation. A significant correlation was found between the performance of both tasks (SSIM and per lesion Dice score, $\rho=0.92$, $p=0.0005$). Our proposed MTLRS demonstrates that accelerated-MRI reconstruction and MRI segmentation can be effectively combined to improve performance on both tasks, potentially benefiting clinical settings.} }
Endnote
%0 Conference Paper %T MultiTask Learning for accelerated-MRI Reconstruction and Segmentation of Brain Lesions in Multiple Sclerosis %A Dimitrios Karkalousos %A Ivana Isgum %A Henk Marquering %A Matthan W. A. Caan %B Medical Imaging with Deep Learning %C Proceedings of Machine Learning Research %D 2024 %E Ipek Oguz %E Jack Noble %E Xiaoxiao Li %E Martin Styner %E Christian Baumgartner %E Mirabela Rusu %E Tobias Heinmann %E Despina Kontos %E Bennett Landman %E Benoit Dawant %F pmlr-v227-karkalousos24a %I PMLR %P 991--1005 %U https://proceedings.mlr.press/v227/karkalousos24a.html %V 227 %X This work proposes MultiTask Learning for accelerated-MRI Reconstruction and Segmentation (MTLRS). Unlike the common single-task approaches, MultiTask Learning identifies relations between multiple tasks to improve the performance of all tasks. The proposed MTLRS consists of a unique cascading architecture, where a recurrent reconstruction network and a segmentation network inform each other through hidden states. The features of the two networks are shared and implicitly enforced as inductive bias. To evaluate the benefit of MTLRS, we compare performing the two tasks of accelerated-MRI reconstruction and MRI segmentation with pre-trained, sequential, end-to-end, and joint approaches. A synthetic multicoil dataset is used to train, validate, and test all approaches with five-fold cross-validation. The dataset consists of 3D FLAIR brain data of relapsing-remitting Multiple Sclerosis patients with known white matter lesions. The acquisition is prospectively undersampled by approximately 7.5 times compared to clinical standards. Reconstruction performance is evaluated by Structural Similarity Index Measure (SSIM) and Peak Signal-to-Noise Ratio (PSNR). Segmentation performance is evaluated by Dice score for combined brain tissue and white matter lesion segmentation and by per lesion Dice score. Results show that MTLRS outperforms other evaluated approaches, providing high-quality reconstructions and accurate white matter lesion segmentation. A significant correlation was found between the performance of both tasks (SSIM and per lesion Dice score, $\rho=0.92$, $p=0.0005$). Our proposed MTLRS demonstrates that accelerated-MRI reconstruction and MRI segmentation can be effectively combined to improve performance on both tasks, potentially benefiting clinical settings.
APA
Karkalousos, D., Isgum, I., Marquering, H. & Caan, M.W.A.. (2024). MultiTask Learning for accelerated-MRI Reconstruction and Segmentation of Brain Lesions in Multiple Sclerosis. Medical Imaging with Deep Learning, in Proceedings of Machine Learning Research 227:991-1005 Available from https://proceedings.mlr.press/v227/karkalousos24a.html.

Related Material