MEDIMP: 3D Medical Images and clinical Prompts for renal transplant representation learning

Leo Milecki, Vicky Kalogeiton, Sylvain Bodard, Dany Anglicheau, Jean-Michel Correas, Marc-Olivier Timsit, Maria Vakalopoulou
Medical Imaging with Deep Learning, PMLR 227:846-861, 2024.

Abstract

Renal transplantation emerges as the most effective solution for end-stage renal disease. Occurring from complex causes, a substantial risk of transplant chronic dysfunction persists and may lead to graft loss. Medical imaging plays a substantial role in renal transplant monitoring in clinical practice. However, graft supervision is multi-disciplinary, notably joining nephrology, urology, and radiology, while identifying robust biomarkers from such high-dimensional and complex data for prognosis is challenging. In this work, taking inspiration from the recent success of Large Language Models (LLMs), we propose MEDIMP – Medical Images and clinical Prompts – a model to learn meaningful multi-modal representations of renal transplant Dynamic Contrast-Enhanced Magnetic Resonance Imaging (DCE MRI) by incorporating structural clinicobiological data after translating them into text prompts. MEDIMP is based on contrastive learning from joint text-image paired embeddings to perform this challenging task. Moreover, we propose a framework that generates medical prompts using automatic textual data augmentations from LLMs. Our goal is to learn meaningful manifolds of renal transplant DCE MRI, interesting for the prognosis of the transplant or patient status (2, 3, and 4 years after the transplant), fully exploiting the limited available multi-modal data most efficiently. Extensive experiments and comparisons with other renal transplant representation learning methods with limited data prove the effectiveness of MEDIMP in a relevant clinical setting, giving new directions toward medical prompts. Our code is available at https://github.com/leomlck/MEDIMP.

Cite this Paper


BibTeX
@InProceedings{pmlr-v227-milecki24a, title = {MEDIMP: 3D Medical Images and clinical Prompts for renal transplant representation learning}, author = {Milecki, Leo and Kalogeiton, Vicky and Bodard, Sylvain and Anglicheau, Dany and Correas, Jean-Michel and Timsit, Marc-Olivier and Vakalopoulou, Maria}, booktitle = {Medical Imaging with Deep Learning}, pages = {846--861}, year = {2024}, editor = {Oguz, Ipek and Noble, Jack and Li, Xiaoxiao and Styner, Martin and Baumgartner, Christian and Rusu, Mirabela and Heinmann, Tobias and Kontos, Despina and Landman, Bennett and Dawant, Benoit}, volume = {227}, series = {Proceedings of Machine Learning Research}, month = {10--12 Jul}, publisher = {PMLR}, pdf = {https://proceedings.mlr.press/v227/milecki24a/milecki24a.pdf}, url = {https://proceedings.mlr.press/v227/milecki24a.html}, abstract = {Renal transplantation emerges as the most effective solution for end-stage renal disease. Occurring from complex causes, a substantial risk of transplant chronic dysfunction persists and may lead to graft loss. Medical imaging plays a substantial role in renal transplant monitoring in clinical practice. However, graft supervision is multi-disciplinary, notably joining nephrology, urology, and radiology, while identifying robust biomarkers from such high-dimensional and complex data for prognosis is challenging. In this work, taking inspiration from the recent success of Large Language Models (LLMs), we propose MEDIMP – Medical Images and clinical Prompts – a model to learn meaningful multi-modal representations of renal transplant Dynamic Contrast-Enhanced Magnetic Resonance Imaging (DCE MRI) by incorporating structural clinicobiological data after translating them into text prompts. MEDIMP is based on contrastive learning from joint text-image paired embeddings to perform this challenging task. Moreover, we propose a framework that generates medical prompts using automatic textual data augmentations from LLMs. Our goal is to learn meaningful manifolds of renal transplant DCE MRI, interesting for the prognosis of the transplant or patient status (2, 3, and 4 years after the transplant), fully exploiting the limited available multi-modal data most efficiently. Extensive experiments and comparisons with other renal transplant representation learning methods with limited data prove the effectiveness of MEDIMP in a relevant clinical setting, giving new directions toward medical prompts. Our code is available at https://github.com/leomlck/MEDIMP.} }
Endnote
%0 Conference Paper %T MEDIMP: 3D Medical Images and clinical Prompts for renal transplant representation learning %A Leo Milecki %A Vicky Kalogeiton %A Sylvain Bodard %A Dany Anglicheau %A Jean-Michel Correas %A Marc-Olivier Timsit %A Maria Vakalopoulou %B Medical Imaging with Deep Learning %C Proceedings of Machine Learning Research %D 2024 %E Ipek Oguz %E Jack Noble %E Xiaoxiao Li %E Martin Styner %E Christian Baumgartner %E Mirabela Rusu %E Tobias Heinmann %E Despina Kontos %E Bennett Landman %E Benoit Dawant %F pmlr-v227-milecki24a %I PMLR %P 846--861 %U https://proceedings.mlr.press/v227/milecki24a.html %V 227 %X Renal transplantation emerges as the most effective solution for end-stage renal disease. Occurring from complex causes, a substantial risk of transplant chronic dysfunction persists and may lead to graft loss. Medical imaging plays a substantial role in renal transplant monitoring in clinical practice. However, graft supervision is multi-disciplinary, notably joining nephrology, urology, and radiology, while identifying robust biomarkers from such high-dimensional and complex data for prognosis is challenging. In this work, taking inspiration from the recent success of Large Language Models (LLMs), we propose MEDIMP – Medical Images and clinical Prompts – a model to learn meaningful multi-modal representations of renal transplant Dynamic Contrast-Enhanced Magnetic Resonance Imaging (DCE MRI) by incorporating structural clinicobiological data after translating them into text prompts. MEDIMP is based on contrastive learning from joint text-image paired embeddings to perform this challenging task. Moreover, we propose a framework that generates medical prompts using automatic textual data augmentations from LLMs. Our goal is to learn meaningful manifolds of renal transplant DCE MRI, interesting for the prognosis of the transplant or patient status (2, 3, and 4 years after the transplant), fully exploiting the limited available multi-modal data most efficiently. Extensive experiments and comparisons with other renal transplant representation learning methods with limited data prove the effectiveness of MEDIMP in a relevant clinical setting, giving new directions toward medical prompts. Our code is available at https://github.com/leomlck/MEDIMP.
APA
Milecki, L., Kalogeiton, V., Bodard, S., Anglicheau, D., Correas, J., Timsit, M. & Vakalopoulou, M.. (2024). MEDIMP: 3D Medical Images and clinical Prompts for renal transplant representation learning. Medical Imaging with Deep Learning, in Proceedings of Machine Learning Research 227:846-861 Available from https://proceedings.mlr.press/v227/milecki24a.html.

Related Material