Toward Understanding Complex Spaces: Graph Laplacians on Manifolds with Singularities and Boundaries

Mikhail Belkin, Qichao Que, Yusu Wang, Xueyuan Zhou
Proceedings of the 25th Annual Conference on Learning Theory, PMLR 23:36.1-36.26, 2012.

Abstract

In manifold learning, algorithms based on graph Laplacian constructed from data have received considerable attention both in practical applications and theoretical analysis. Much of the existing work has been done under the assumption that the data is sampled from a manifold without boundaries and singularities or that the functions of interest are evaluated away from such points. At the same time, it can be argued that singularities and boundaries are an important aspect of the geometry of realistic data. Boundaries occur whenever the process generating data has a bounding constraint; while singularities appear when two different manifolds intersect or if a process undergoes a “phase transition", changing non-smoothly as a function of a parameter. In this paper we consider the behavior of graph Laplacians at points at or near boundaries and two main types of other singularities: intersections, where different manifolds come together and sharp "edges", where a manifold sharply changes direction. We show that the behavior of graph Laplacian near these singularities is quite different from that in the interior of the manifolds. In fact, a phenomenon somewhat reminiscent of the Gibbs effect in the analysis of Fourier series, can be observed in the behavior of graph Laplacian near such points. Unlike in the interior of the domain, where graph Laplacian converges to the Laplace-Beltrami operator, near singularities graph Laplacian tends to a first-order differential operator, which exhibits different scaling behavior as a function of the kernel width. One important implication is that while points near the singularities occupy only a small part of the total volume, the difference in scaling results in a disproportionately large contribution to the total behavior. Another significant finding is that while the scaling behavior of the operator is the same near different types of singularities, they are very distinct at a more refined level of analysis. We believe that a comprehensive understanding of these structures in addition to the standard case of a smooth manifold can take us a long way toward better methods for analysis of complex non-linear data and can lead to significant progress in algorithm design.

Cite this Paper


BibTeX
@InProceedings{pmlr-v23-belkin12, title = {Toward Understanding Complex Spaces: Graph Laplacians on Manifolds with Singularities and Boundaries}, author = {Belkin, Mikhail and Que, Qichao and Wang, Yusu and Zhou, Xueyuan}, booktitle = {Proceedings of the 25th Annual Conference on Learning Theory}, pages = {36.1--36.26}, year = {2012}, editor = {Mannor, Shie and Srebro, Nathan and Williamson, Robert C.}, volume = {23}, series = {Proceedings of Machine Learning Research}, address = {Edinburgh, Scotland}, month = {25--27 Jun}, publisher = {PMLR}, pdf = {http://proceedings.mlr.press/v23/belkin12/belkin12.pdf}, url = {https://proceedings.mlr.press/v23/belkin12.html}, abstract = {In manifold learning, algorithms based on graph Laplacian constructed from data have received considerable attention both in practical applications and theoretical analysis. Much of the existing work has been done under the assumption that the data is sampled from a manifold without boundaries and singularities or that the functions of interest are evaluated away from such points. At the same time, it can be argued that singularities and boundaries are an important aspect of the geometry of realistic data. Boundaries occur whenever the process generating data has a bounding constraint; while singularities appear when two different manifolds intersect or if a process undergoes a “phase transition", changing non-smoothly as a function of a parameter. In this paper we consider the behavior of graph Laplacians at points at or near boundaries and two main types of other singularities: intersections, where different manifolds come together and sharp "edges", where a manifold sharply changes direction. We show that the behavior of graph Laplacian near these singularities is quite different from that in the interior of the manifolds. In fact, a phenomenon somewhat reminiscent of the Gibbs effect in the analysis of Fourier series, can be observed in the behavior of graph Laplacian near such points. Unlike in the interior of the domain, where graph Laplacian converges to the Laplace-Beltrami operator, near singularities graph Laplacian tends to a first-order differential operator, which exhibits different scaling behavior as a function of the kernel width. One important implication is that while points near the singularities occupy only a small part of the total volume, the difference in scaling results in a disproportionately large contribution to the total behavior. Another significant finding is that while the scaling behavior of the operator is the same near different types of singularities, they are very distinct at a more refined level of analysis. We believe that a comprehensive understanding of these structures in addition to the standard case of a smooth manifold can take us a long way toward better methods for analysis of complex non-linear data and can lead to significant progress in algorithm design.} }
Endnote
%0 Conference Paper %T Toward Understanding Complex Spaces: Graph Laplacians on Manifolds with Singularities and Boundaries %A Mikhail Belkin %A Qichao Que %A Yusu Wang %A Xueyuan Zhou %B Proceedings of the 25th Annual Conference on Learning Theory %C Proceedings of Machine Learning Research %D 2012 %E Shie Mannor %E Nathan Srebro %E Robert C. Williamson %F pmlr-v23-belkin12 %I PMLR %P 36.1--36.26 %U https://proceedings.mlr.press/v23/belkin12.html %V 23 %X In manifold learning, algorithms based on graph Laplacian constructed from data have received considerable attention both in practical applications and theoretical analysis. Much of the existing work has been done under the assumption that the data is sampled from a manifold without boundaries and singularities or that the functions of interest are evaluated away from such points. At the same time, it can be argued that singularities and boundaries are an important aspect of the geometry of realistic data. Boundaries occur whenever the process generating data has a bounding constraint; while singularities appear when two different manifolds intersect or if a process undergoes a “phase transition", changing non-smoothly as a function of a parameter. In this paper we consider the behavior of graph Laplacians at points at or near boundaries and two main types of other singularities: intersections, where different manifolds come together and sharp "edges", where a manifold sharply changes direction. We show that the behavior of graph Laplacian near these singularities is quite different from that in the interior of the manifolds. In fact, a phenomenon somewhat reminiscent of the Gibbs effect in the analysis of Fourier series, can be observed in the behavior of graph Laplacian near such points. Unlike in the interior of the domain, where graph Laplacian converges to the Laplace-Beltrami operator, near singularities graph Laplacian tends to a first-order differential operator, which exhibits different scaling behavior as a function of the kernel width. One important implication is that while points near the singularities occupy only a small part of the total volume, the difference in scaling results in a disproportionately large contribution to the total behavior. Another significant finding is that while the scaling behavior of the operator is the same near different types of singularities, they are very distinct at a more refined level of analysis. We believe that a comprehensive understanding of these structures in addition to the standard case of a smooth manifold can take us a long way toward better methods for analysis of complex non-linear data and can lead to significant progress in algorithm design.
RIS
TY - CPAPER TI - Toward Understanding Complex Spaces: Graph Laplacians on Manifolds with Singularities and Boundaries AU - Mikhail Belkin AU - Qichao Que AU - Yusu Wang AU - Xueyuan Zhou BT - Proceedings of the 25th Annual Conference on Learning Theory DA - 2012/06/16 ED - Shie Mannor ED - Nathan Srebro ED - Robert C. Williamson ID - pmlr-v23-belkin12 PB - PMLR DP - Proceedings of Machine Learning Research VL - 23 SP - 36.1 EP - 36.26 L1 - http://proceedings.mlr.press/v23/belkin12/belkin12.pdf UR - https://proceedings.mlr.press/v23/belkin12.html AB - In manifold learning, algorithms based on graph Laplacian constructed from data have received considerable attention both in practical applications and theoretical analysis. Much of the existing work has been done under the assumption that the data is sampled from a manifold without boundaries and singularities or that the functions of interest are evaluated away from such points. At the same time, it can be argued that singularities and boundaries are an important aspect of the geometry of realistic data. Boundaries occur whenever the process generating data has a bounding constraint; while singularities appear when two different manifolds intersect or if a process undergoes a “phase transition", changing non-smoothly as a function of a parameter. In this paper we consider the behavior of graph Laplacians at points at or near boundaries and two main types of other singularities: intersections, where different manifolds come together and sharp "edges", where a manifold sharply changes direction. We show that the behavior of graph Laplacian near these singularities is quite different from that in the interior of the manifolds. In fact, a phenomenon somewhat reminiscent of the Gibbs effect in the analysis of Fourier series, can be observed in the behavior of graph Laplacian near such points. Unlike in the interior of the domain, where graph Laplacian converges to the Laplace-Beltrami operator, near singularities graph Laplacian tends to a first-order differential operator, which exhibits different scaling behavior as a function of the kernel width. One important implication is that while points near the singularities occupy only a small part of the total volume, the difference in scaling results in a disproportionately large contribution to the total behavior. Another significant finding is that while the scaling behavior of the operator is the same near different types of singularities, they are very distinct at a more refined level of analysis. We believe that a comprehensive understanding of these structures in addition to the standard case of a smooth manifold can take us a long way toward better methods for analysis of complex non-linear data and can lead to significant progress in algorithm design. ER -
APA
Belkin, M., Que, Q., Wang, Y. & Zhou, X.. (2012). Toward Understanding Complex Spaces: Graph Laplacians on Manifolds with Singularities and Boundaries. Proceedings of the 25th Annual Conference on Learning Theory, in Proceedings of Machine Learning Research 23:36.1-36.26 Available from https://proceedings.mlr.press/v23/belkin12.html.

Related Material