[edit]
Distribution-free Conformal Prediction for Ordinal Classification
Proceedings of the Thirteenth Symposium on Conformal and Probabilistic Prediction with Applications, PMLR 230:120-139, 2024.
Abstract
Multi-label classification is a common challenge in various machine learning applications, where a single data instance can be associated with multiple classes simultaneously. The current paper proposes a novel tree-based method for multi-label classification using conformal prediction and multiple hypothesis testing. The proposed method employs hierarchical clustering with labelsets to develop a hierarchical tree, which is then formulated as a multiple-testing problem with a hierarchical structure. The split-conformal prediction method is used to obtain marginal conformal $p$-values for each tested hypothesis, and two hierarchical testing procedures are developed based on marginal conformal $p$-values, including a hierarchical Bonferroni procedure and its modification for controlling the family-wise error rate. The prediction sets are thus formed based on the testing outcomes of these two procedures. We establish a theoretical guarantee of valid coverage for the prediction sets through proven family-wise error rate control of those two procedures. We demonstrate the effectiveness of our method in a simulation study and two real data analysis compared to other conformal methods for multi-label classification.