Representing Edge Flows on Graphs via Sparse Cell Complexes

Josef Hoppe, Michael T Schaub
Proceedings of the Second Learning on Graphs Conference, PMLR 231:1:1-1:22, 2024.

Abstract

Obtaining sparse, interpretable representations of observable data is crucial in many machine learning and signal processing tasks. For data representing flows along the edges of a graph, an intuitively interpretable way to obtain such representations is to lift the graph structure to a simplicial complex: The eigenvectors of the associated Hodge-Laplacian, respectively the incidence matrices of the corresponding simplicial complex then induce a Hodge decomposition, which can be used to represent the observed data in terms of gradient, curl, and harmonic flows. In this paper, we generalize this approach to cellular complexes and introduce the flow representation learning problem, i.e., the problem of augmenting the observed graph by a set of cells, such that the eigenvectors of the associated Hodge Laplacian provide a sparse, interpretable representation of the observed edge flows on the graph. We show that this problem is NP-hard and introduce an efficient approximation algorithm for its solution. Experiments on real-world and synthetic data demonstrate that our algorithm outperforms state-of-the-art methods with respect to approximation error, while being computationally efficient.

Cite this Paper


BibTeX
@InProceedings{pmlr-v231-hoppe24a, title = {Representing Edge Flows on Graphs via Sparse Cell Complexes}, author = {Hoppe, Josef and Schaub, Michael T}, booktitle = {Proceedings of the Second Learning on Graphs Conference}, pages = {1:1--1:22}, year = {2024}, editor = {Villar, Soledad and Chamberlain, Benjamin}, volume = {231}, series = {Proceedings of Machine Learning Research}, month = {27--30 Nov}, publisher = {PMLR}, pdf = {https://proceedings.mlr.press/v231/hoppe24a/hoppe24a.pdf}, url = {https://proceedings.mlr.press/v231/hoppe24a.html}, abstract = {Obtaining sparse, interpretable representations of observable data is crucial in many machine learning and signal processing tasks. For data representing flows along the edges of a graph, an intuitively interpretable way to obtain such representations is to lift the graph structure to a simplicial complex: The eigenvectors of the associated Hodge-Laplacian, respectively the incidence matrices of the corresponding simplicial complex then induce a Hodge decomposition, which can be used to represent the observed data in terms of gradient, curl, and harmonic flows. In this paper, we generalize this approach to cellular complexes and introduce the flow representation learning problem, i.e., the problem of augmenting the observed graph by a set of cells, such that the eigenvectors of the associated Hodge Laplacian provide a sparse, interpretable representation of the observed edge flows on the graph. We show that this problem is NP-hard and introduce an efficient approximation algorithm for its solution. Experiments on real-world and synthetic data demonstrate that our algorithm outperforms state-of-the-art methods with respect to approximation error, while being computationally efficient.} }
Endnote
%0 Conference Paper %T Representing Edge Flows on Graphs via Sparse Cell Complexes %A Josef Hoppe %A Michael T Schaub %B Proceedings of the Second Learning on Graphs Conference %C Proceedings of Machine Learning Research %D 2024 %E Soledad Villar %E Benjamin Chamberlain %F pmlr-v231-hoppe24a %I PMLR %P 1:1--1:22 %U https://proceedings.mlr.press/v231/hoppe24a.html %V 231 %X Obtaining sparse, interpretable representations of observable data is crucial in many machine learning and signal processing tasks. For data representing flows along the edges of a graph, an intuitively interpretable way to obtain such representations is to lift the graph structure to a simplicial complex: The eigenvectors of the associated Hodge-Laplacian, respectively the incidence matrices of the corresponding simplicial complex then induce a Hodge decomposition, which can be used to represent the observed data in terms of gradient, curl, and harmonic flows. In this paper, we generalize this approach to cellular complexes and introduce the flow representation learning problem, i.e., the problem of augmenting the observed graph by a set of cells, such that the eigenvectors of the associated Hodge Laplacian provide a sparse, interpretable representation of the observed edge flows on the graph. We show that this problem is NP-hard and introduce an efficient approximation algorithm for its solution. Experiments on real-world and synthetic data demonstrate that our algorithm outperforms state-of-the-art methods with respect to approximation error, while being computationally efficient.
APA
Hoppe, J. & Schaub, M.T.. (2024). Representing Edge Flows on Graphs via Sparse Cell Complexes. Proceedings of the Second Learning on Graphs Conference, in Proceedings of Machine Learning Research 231:1:1-1:22 Available from https://proceedings.mlr.press/v231/hoppe24a.html.

Related Material